

© Andor 2015 andor.com

Software Guide

Software Development Kit
V3.12

v2.6 June 2016

Page 2

 V2.6 June 2016 andor.com

SDK 3

Table of Contents
SECTION 1 INSTALLATION .. 5

1.1 Technical Support ... 5

1.2 Rationale ... 6

1.3 Structure .. 6

1.4 Key Features ... 6

1.5 Installation ... 7

1.5.1 Windows Installation .. 7

1.5.2 Linux Installation... 8

1.6 Getting Started .. 10

1.6.1 Windows Getting Started ... 10

1.6.2 Linux Getting Started ... 12

1.6.3 Microsoft Application Verifier .. 12

SECTION 2 TUTORIAL .. 13

2.1 Further Examples .. 16

2.1.1 Initialize Library and Open Camera.. 16

2.1.2 Simple Single Frame Acquisition ... 17

2.1.3 Using a Feature .. 17

2.1.4 Circular Buffer .. 18

2.1.7 Pixel Encoding.. 19

2.1.8 Call-Backs .. 20

2.1.9 Metadata .. 21

2.1.10 Binning ... 23

2.1.11 Acquisition Events .. 23

2.1.12 Fast Exposure Switching .. 23

2.2 ESD Recovery ... 24

SECTION 3 API (APPLICATION PROGRAM INTERFACE) ... 25

3.1 Overview ... 25

3.2 Function Listing ... 25

3.3 API Description .. 26

3.3.1 Library Initialization .. 26

3.3.2 Opening a Camera Handle .. 26

3.3.3 Integer Features ... 27

3.3.4 Floating Point Features .. 27

3.3.5 Boolean Features ... 28

3.3.6 Enumerated Features .. 28

3.3.7 Command Features ... 29

Page 3

 V2.6 June 2016 andor.com

SDK 3

3.3.8 String Features ... 30

3.3.9 Buffer Management .. 30

3.3.10 Feature Access Control .. 31

3.3.11 Feature Notifications .. 32

3.4 Error Codes ... 34

SECTION 4 FEATURES .. 37

4.1 Camera Support .. 37

4.2 Feature Reference .. 37

4.3 Image Format .. 49

4.4 Pixel Encoding ... 51

4.5 Metadata ... 53

4.6 Area of Interest .. 55

4.7 PixelEncoding and PreAmpGainControl ... 56

4.8 Sensor Cooling .. 57

4.9 Comparison of SDK2 and SDK3 ... 58

SECTION 5 FUNCTION REFERENCE .. 59

5.1 Function Listing ... 59

5.1.1 AT_Open .. 59

5.1.2 AT_Close .. 59

5.1.3 AT_IsImplemented ... 59

5.1.4 AT_IsReadOnly .. 59

5.1.5 AT_IsWritable ... 60

5.1.6 AT_IsReadable... 60

5.1.7 AT_RegisterFeatureCallback ... 60

5.1.8 AT_UnregisterFeatureCallback .. 60

5.1.9 AT_InitialiseLibrary ... 60

5.1.10 AT_FinaliseLibrary ... 61

5.1.11 AT_SetInt ... 61

5.1.12 – AT_GetInt .. 61

5.1.13 – AT_GetIntMax ... 61

5.1.14 – AT_GetIntMin .. 61

5.1.15 – AT_SetFloat .. 61

5.1.16 – AT_GetFloat .. 62

5.1.17 – AT_GetFloatMax ... 62

5.1.18 – AT_GetFloatMin .. 62

5.1.19 – AT_SetBool ... 62

5.1.20 – AT_GetBool ... 63

Page 4

 V2.6 June 2016 andor.com

SDK 3

5.1.21 – AT_Command ... 63

5.1.22 – AT_SetString ... 63

5.1.23 – AT_GetString... 63

5.1.24 – AT_GetStringMaxLength ... 63

5.1.25 – AT_SetEnumIndex .. 64

5.1.26 – AT_SetEnumString ... 64

5.1.27 – AT_GetEnumIndex .. 64

5.1.28 – AT_GetEnumCount ... 64

5.1.29 – AT_GetEnumStringByIndex .. 64

5.1.30 – AT_IsEnumIndexAvailable .. 65

5.1.31 – AT_IsEnumIndexImplemented .. 65

5.1.32 – AT_QueueBuffer ... 65

5.1.33 – AT_WaitBuffer ... 65

5.1.34 – AT_Flush ... 65

SECTION 6 ADDITIONAL LIBRARIES .. 66

6.1 ATUTILITY .. 66

6.1.1 – AT_InitialiseUtilityLibrary ... 66

6.1.2 – AT_FinaliseUtilityLibrary ... 66

6.1.3 – AT_ConvertBuffer ... 66

6.1.3.1 Convert Buffer Example .. 67

6.1.4 – AT_ConvertBufferUsingMetadata ... 69

Page 5

 V2.6 June 2016 andor.com

SDK 3

SECTION 1 INSTALLATION

1.1 TECHNICAL SUPPORT

If you have any questions regarding the use of this equipment, please contact the representative, from whom your
system was purchased, or:

Europe

Andor Technology
7 Millennium Way

Springvale Business Park
Belfast

BT12 7AL
Northern Ireland

Tel. +44 (0) 28 9023 7126
Fax. +44 (0) 28 9031 0792

e-mail: productsupport@andor.com

USA

Andor Technology
425 Sullivan Avenue

Suite # 3
South Windsor

CT 06074
USA

Tel. (860) 290-9211
Fax. (860) 290-9566

e-mail:productsupport@andor.com

Asia-Pacific

Andor Technology (Japan)
7F Ichibancho Central Building

22-1 Ichiban-Cho,
Chiyoda-Ku

Tokyo 102-0082
Japan

Tel. +81 3 3511 0659
Fax. +81 3 35110662

e-mail: productsupport@andor.com

China

Andor Technology
Rm 1213
Building B

Luo Ke Time Square
No. 103 Huizhongli
Chaoyang District

Beijing 100101
China

Tel. +86-10-5129-4977
Fax. +86-10-6445-5401

e-mail: productsupport@andor.com

mailto:productsupport@andor.com
mailto:productsupport@andor.com
mailto:productsupport@andor.com
mailto:productsupport@andor.com

Page 6

 V2.6 June 2016 andor.com

SDK 3

1.2 RATIONALE

Andor SDK Version 3, herein referred to as SDK3, has been designed from the ground up to simplify integration of the
Andor camera range into your application. Modern scientific digital cameras have become feature rich devices which
can be tailored to the particular application into which they are applied. Andor understands that the integration of the
camera is just one component of a larger system solution, and, as such a more consistent and scalable API is required
to allow the application developer to both quickly prototype basic acquisition functionality and to provide a clear path to
exposing the full feature set.

1.3 STRUCTURE

Install Frame Grabber Card:

 Shut down your PC.

 Install the PCI Express frame grabber card into a free PCI Express slot on your motherboard. Minimum PCIe x8

for Zyla.

 Power on the PC.

 If you are running Windows 7, the drivers will be installed automatically during start up.

 If you are running Windows Vista you may be asked to specify the directory containing the Bitflow drivers, these

are located in ‘C:\BitFlow SDK 5.60\PlugAndPlay’

 If you are running Windows XP, then the ‘Found New Hardware Wizard’ dialog will be displayed following the

restart.

o At the ‘Can Windows connect to Windows Update to search for software’ prompt, select ‘No, not this

time’ and click on the ‘Next’ button

o Select ‘Install the software automatically’ option and click on Install.

o The Camera Link drivers will now be installed.

1.4 KEY FEATURES

 Simplified API to help reduce development time

 Full access to the current state and limits of camera features

 Support for querying the availability of camera features

 Observer interface to camera features

 Handle parameter in each function to facilitate multiple camera support

 Simple Queue / Wait interface for acquisition buffer management

 Built in software simulated camera (SimCam)

Page 7

 V2.6 June 2016 andor.com

SDK 3

1.5 INSTALLATION

The following sections will describe how to install the software and hardware in order to make your sCMOS camera
ready to use.

1.5.1 WINDOWS INSTALLATION

Ensure that you do not install the PCI Express frame grabber card before running any of the software installations.

1. Installation of SDK3 and Camera Link drivers:
 [Note: You must have administrator access on your PC to perform the installation.]

 Run the setup.exe file on the cd or from download.

 Select the installation directory or accept the default when prompted by the installer.

 Click on the Install button to confirm and continue with the installation.

 During the installation a number of other windows will pop up as the Camera Link drivers and SDK3 are
installed. Click on the Finish button when prompted.

2. Install Frame Grabber Card:

 Shut down your PC.

 Install the PCI Express frame grabber card into a free PCI Express slot on your motherboard.

o Minimum x4 PCIe for Zyla 3-Tap and Neo 3-Tap

o Minimum x8 PCIe for Zyla 10-Tap

 Power on the PC.

 Windows 7: the drivers are installed automatically during start up.

 Windows Vista: you may be asked to specify the directory containing the Bitflow drivers, these are located in

‘C:\BitFlow SDK 5.60\PlugAndPlay’

 Windows XP: the ‘Found New Hardware Wizard’ dialog will be displayed following the restart.

o At the ‘Can Windows connect to Windows Update to search for software’ prompt, select ‘No, not this

time’ and click on the ‘Next’ button

o Select ‘Install the software automatically’ option and click on Install.

o The Camera Link drivers will now be installed.

Page 8

 V2.6 June 2016 andor.com

SDK 3

1.5.2 LINUX INSTALLATION

The SDK3 and Camera Link drivers are distributed as a Linux tar file named andor-sdk3-A.B.C.D.tgz where A.B.C.D is
the distribution version code.

1. Installation of SDK3 and Camera Link drivers:

 After you have downloaded the tar file you should open a terminal window and change to the download

directory.

 Untar the download file by typing:

tar -xf andor-sdk3-A.B.C.D.tgz

where A.B.C.D is replaced by the version information of the file you have downloaded e.g.

tar –xf andor-sdk3-3.1.30005.0.tgz

 This creates a sub-folder “andor”.

 Change to the “andor” directory and type:

sudo ./install_andor

 If the install script is unable to determine the platform you will be prompted to enter the platform i.e.

Platform cannot be automatically determined. Please select platform to install:
1. 32-bit
2. 64-bit
3. Exit
Selection:

 Enter appropriate selection, e.g. 2

 The following warning will then be displayed:

This setup will install several libraries into,
 /usr/local/lib and
 /usr/local/bin
Continue (y/n)?

 Enter “y” to continue.

 If the installation is successful you should see the following:

Bitflow Installation successful
Additional manual configuration required
See the 'BitflowManualConfig.txt' in the 'doc' folder

Andor Installation successful
See the 'doc' directory for further information.

 The BitflowManualConfig.txt document contains the following information:

Bitflow manual configuration steps
==================================
The following definitions are used in this document and should be substituted for the actual values:

<installation folder> is the folder that the andor package was unzipped into.
{32|64} 32 should be used if the OS is 32bit, 64 should be used if the OS is 64bit.

The following lines should be added to your ~/.bashrc file or equivalent:

export BITFLOW_INSTALL_DIRS=<installation folder>/andor/bitflow
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<installation folder>/andor/bitflow/{32|64}b/lib

Page 9

 V2.6 June 2016 andor.com

SDK 3

The following lines should be added to your /etc/rc.local file or equivalent:

sudo modprobe v4l2_common
sudo modprobe v4l1_compat
sudo modprobe videodev
sudo insmod <installation folder>/andor/bitflow/drv/bitflow.ko fwDelay1=200 customFlags=1
sudo chmod a+rw /dev/video*

Add the 'nopat' kernel option to your boot loader.
(You can find out how to do this in your linux distribution help section)

 To finish the installation perform the manual steps described in the BitflowManualConfig.txt document. These

steps are required to complete the configuration of the cameralink card.

Page 10

 V2.6 June 2016 andor.com

SDK 3

1.6 GETTING STARTED

This section will demonstrate how to create a basic SDK3 application that will test the software & hardware installation,
and will help to confirm communication between PC and camera.

1.6.1 WINDOWS GETTING STARTED

Running the examples that came with the installation

In the installation directory there is an examples directory. In that directory there are two further directories,
‘acquisition’ and ‘serialnumber’. These directories contain the executables and the required DLLs to initialise and
communicate with the sCMOS camera.

 The acquisition example will initialise and take a single acquisition with the camera and display the counts of
the first 20 pixels.

 The serial number example will initialise and print out the serial number of the camera.

Creating your own applications

With this installation you can create an application with an Embarcadero or Microsoft compatible compiler. Perform the
following steps to create your application.

1. Create a simple console application with either Embarcadero C++ Builder or Microsoft Visual Studio.
2. Add the SDK3 installation directory to the include path for the project. E.g. C:\Program Files\Andor SDK3
3. Add the appropriate library from the SDK3 installation directory to your project.

 atcore.lib for the Embarcadero compiler

 atcorem.lib for the Microsoft compiler
4. Copy all the DLL’s from the SDK3 installation directory to the directory that the executable is going to run from.
5. Type or copy the code shown below into your projects main file.
6. Compile and run the program. The program should initialise the first camera found and display it’s serial

number.
7. If the serial number is not displayed then follow the comments in the code listing for hints on tracking down

any issues.

#include "atcore.h"

#include <iostream>

using namespace std;

int main(int argc, char* argv[])

{

 int i_retCode;

 i_retCode = AT_InitialiseLibrary();

 if (i_retCode != AT_SUCCESS) {

 //error condition, check atdebug.log file

 }

 AT_64 iNumberDevices = 0;

 i_returnCode = AT_GetInt(AT_HANDLE_SYSTEM, L"DeviceCount", &iNumberDevices);

 if (iNumberDevices <= 0) {

 // No cameras found, check all redistributable binaries

 // have been copied to the executable directory or are in the system path

 // and check atdebug.log file

 }

 else {

NOTE
It is assumed that there is at least 1 sCMOS camera attached. It is acceptable to have no sCMOS cameras
attached if using the software simulated camera (SimCam).

Page 11

 V2.6 June 2016 andor.com

SDK 3

 AT_H Hndl;

 i_retCode = AT_Open(0, &Hndl);

 if (i_retCode != AT_SUCCESS) {

 //error condition - check atdebug.log

 }

 AT_WC szValue[64];

 i_retCode= AT_GetString(Hndl, L"SerialNumber", szValue, 64);

 if (i_retCode == AT_SUCCESS) {

 //The serial number of the camera is szValue

 wcout << L"The serial number is " << szValue << endl;

 }

 else {

 //Serial Number feature was not found, check the error code for information

 }

 AT_Close(Hndl);

 }

 AT_FinaliseLibrary();

 return 0;

}

Page 12

 V2.6 June 2016 andor.com

SDK 3

1.6.2 LINUX GETTING STARTED

Running the examples that came with the installation
In the installation directory there is an examples directory. In that directory there are two further directories,
‘listdevices’ and ‘image’. These directories contain source and makefiles. To build the examples change into the
appropriate directory and type “make”.

1. To run the listdevices example type “./listdevices” from the “listdevices” directory. You should see the following
output:

Found 3 Devices.
Device 0 : DC-152Q-FI
Device 1 : SIMCAM CMOS
Device 2 : SIMCAM CMOS
Press any key and enter to exit.

2. To run the image example type “./image” from the “image” directory. A bitmap file “image.bmp” should be
created in the “image” directory containing a single image acquired from the camera.

Creating your own applications
The example directories contain example source code and makefiles that show how to create your own application.
Also see windows example code shown in Section 1.6.1 Windows Getting Started.

1.6.3 MICROSOFT APPLICATION VERIFIER

It has been found that the SDK3 cannot be used with the Microsoft Application Verifier. This is due to how libusb
handles disconnected or inactive devices during initialisation which, though it is later handled within libusb, causes
Microsoft Application Verifier to throw an exception.

Page 13

 V2.6 June 2016 andor.com

SDK 3

SECTION 2 TUTORIAL
This section explains how to develop a program to use the API to communicate with a sCMOS camera. It points out
the critical parts that the program must have and provides a foundation to build more complicated programs in the
future.

The first thing that must be done is to add the appropriate library file to the project. During the SDK3 installation a
Borland library (atcore.lib) and a Microsoft library (atcorem.lib) are made available. You should also add the include
path of the SDK3 installation directory to your project. The atcore.h file from this directory will need to be included in
the main project file.

The very first API call must be AT_InitialiseLibrary, and the very last call must be AT_FinaliseLibrary. These functions
will prepare the API for use and free resources when no longer needed.

AT_InitialiseLibrary();

AT_FinaliseLibrary();

Every function will return an error code when called. It is recommended that a user check every return code before
moving on to the next statement. If the AT_InitialiseLibrary function call fails there is no point continuing on with the
program as every proceeding function call will also fail.
Every function call will return an Integer and each return code that could possibly be returned is listed in the atcore.h
file and documented in Section 3.4 Error Codes.

So now the program becomes:

int i_returnCode;

i_returnCode = AT_InitialiseLibrary();

if (i_returnCode == AT_SUCCESS) {

 //continue with program

}

i_returnCode = AT_ FinaliseLibrary();

if (i_returnCode != AT_SUCCESS) {

 //Error FinaliseLibrary

The next stage of the program is to get a handle to the camera that is to be controlled. This is done with the AT_Open
function and there is a corresponding AT_Close function to release the camera handle. A camera index is passed into
the AT_Open function specifying which camera you wish to open.

Error Checking

It is highly recommended that you check return codes from every function in case of error. For the purpose of
this tutorial the error checking will be kept to a minimum to reduce the length of the program.

Page 14

 V2.6 June 2016 andor.com

SDK 3

Now the program is:

int i_returnCode;

AT_H Hndl;

int i_cameraIndex = 0;

i_returnCode = AT_InitialiseLibrary();

if (i_returnCode == AT_SUCCESS) {

 i_returnCode = AT_Open (i_cameraIndex, &Hndl);

 if (i_returnCode == AT_SUCCESS) {

 //continue on with program

 //.........

 i_returnCode = AT_Close (Hndl);

 if (i_returnCode != AT_SUCCESS) {

 // error closing handle

 }

 }

}

i_returnCode = AT_FinaliseLibrary();

if (i_returnCode != AT_SUCCESS) {

 //Error FinaliseLibrary

}

From here on example code will assume that we have successfully got a handle to our camera, following on from the
previous code. Now we will add code to the program to modify and view the “ExposureTime” setting of the camera.

It is recommended that any features that need to set or view that they should have their accessibility checked first.
Every feature can be checked for being implemented (AT_IsImplemented), writable (AT_IsWritable), readable
(AT_IsReadable) and read only (AT_IsReadOnly)

For this tutorial it is assumed that the ‘Exposure Time’ feature is writable and readable, to reduce code complexity.

double d_newExposure = 0.02;

i_returnCode = AT_SetFloat (Hndl, L"ExposureTime", d_newExposure);

if (i_returnCode == AT_SUCCESS) {

 //it has been set

}

In order to ensure a low noise level in the images we must enable the sensor cooling mechanism. Cooling is off by
default, to activate the mechanism use the Boolean feature SensorCooling. Then set the temperature with the
TemperatureControl feature and check the status using TemperatureStatus.

SimCam

There are two software simulated cameras provided along with the SDK, which allows a user to develop code
and see a program running without a hardware camera being connected. If there are any Neo cameras
connected then their indexes will start from 0. If the atdevsimcam.dll is in the executable directory then camera
indexes after the Neo indexes will reference these software cameras, known as SimCams. We will assume
that there is a atdevsimcam.dll and that there is one Neo camera connected, and that we want to control the
hardware camera.

NOTE
It is recommended that when using the AT_SetFloat functions that an AT_GetFloat is done afterwards to get the
actual value that the camera will use as it may not be exactly what was set.

Page 15

 V2.6 June 2016 andor.com

SDK 3

double temperature = 0;

AT_SetBool(Hndl, L"SensorCooling", AT_TRUE);

int temperatureCount = 0;

AT_GetEnumCount(Hndl, L"TemperatureControl", &temperatureCount);

AT_SetEnumIndex(Hndl, L"TemperatureControl", temperatureCount-1);

int temperatureStatusIndex = 0;

wchar_t* temperatureStatus[256];

AT_GetEnumIndex(Hndl, L"TemperatureStatus", &temperatureStatusIndex);

AT_GetEnumStringByIndex(Hndl, L"TemperatureStatus", temperatureStatusIndex,

temperatureStatus, 256);

//Wait for temperature to stabalise

while(wcscmp(L"Stabilised",temperatureStatus) != 0) {

 AT_GetEnumIndex(Hndl, L"TemperatureStatus", &temperatureStatusIndex);

 AT_GetEnumStringByIndex(Hndl, L"TemperatureStatus", temperatureStatusIndex,

temperatureStatus, 256);

}

When setting AccumulateCount, ensure that FrameCount has been set to any value which is a multiple of the value of
AccumulateCount. For example, if AccumulateCount has been set to 4, valid values for FrameCount are 4, 8, 12, 16
etc. This ensures that each accumulation has the correct number of frames; failure to do so will result in a timeout
error during the acquisition.

All other settings we will take as default.

This stage shows how to get data from a single acquisition. In preparation the program must allocate memory to store
the acquired image in. To get the size of memory to be declared use the integer “ImageSizeBytes” feature.
No error checking will be shown in the following example to help with clarity- but it is recommended that in final code
all return codes are checked.

AT_64 ImageSizeBytes;

AT_GetInt(Hndl, L"ImageSizeBytes", &ImageSizeBytes);

//cast so that the value can be used in the AT_QueueBuffer function

int i_imageSize = static_cast<int>(ImageSizeBytes);

unsigned char* uc_Buffer = NULL;

gblp_Buffer = new unsigned char[i_imageSize+8]; // Add 8 to allow data alignment

// Adjust pointer so that it falls on an 8-byte boundary

unsigned char* pucAlignedBuffer = reinterpret_cast<unsigned char*>(

(reinterpret_cast<unsigned long>(gblp_Buffer) + 7) & ~0x7);

The next stage is to let SDK know what memory to use for the upcoming acquisition. This is done with the
AT_QueueBuffer API function call. Multiple buffers can be queued to the SDK before an acquisition starts if you are
acquiring a sequence of frames. For now we will assume that only one frame is required.

AT_QueueBuffer(Hndl, pucAlignedBuffer, ImageSizeBytes);

Buffer Byte Alignment
The memory declared to hold the acquisition should be aligned on an 8 byte boundary, this helps with
system performance and also prevent any alignment fault that could occur. The pucAlignedBuffer
variable in the following code shows how to enforce 8 byte alignment.

Page 16

 V2.6 June 2016 andor.com

SDK 3

Now start the acquisition with the Command “AcquisitionStart”. The command to stop the acquisition is
"AcquisitionStop".

AT_Command(Hndl, L"AcquisitionStart");

//get the data

AT_Command(Hndl, L"AcquisitionStop");

When the acquisition has been started there is a function AT_WaitBuffer that can be used to put the calling thread to
block until the current image has been captured and is ready for the program to use. A time out value in milliseconds is
also specified to AT_WaitBuffer to force it to return if the acquisition has not occurred in that time frame.

unsigned char* pBuf;

int BufSize;

AT_WaitBuffer(Hndl, &pBuf, &BufSize, 10000);

It is vital to check the return code from the AT_WaitBuffer function before processing the returned buffer. The pBuf
return from this function should be the same pointer to the one that was queued in the AT_QueueBuffer function. If all
has been successful, then the data in the array pointed to by pBuf will contain the acquired image. The “Pixel
Encoding” feature should then be checked to confirm the format of the datastream. See the Features Section for a
more complete explanation.

After the acquisition is complete any buffers queued up with the AT_QueueBuffer command but not yet returned from
AT_WaitBuffer, need to be released by the SDK or else the next acquisition will use them. Failure to call the AT_Flush
function after an acquisition will not only result in both queues not being cleared, but may lead to undefined behaviour.

AT_Flush(Hndl);

2.1 FURTHER EXAMPLES

2.1.1 INITIALIZE LIBRARY AND OPEN CAMERA
//InitialiseLibrary must be the first function call made by an application before

accessing other functions

AT_InitialiseLibrary();

//Declare an Andor Device Handle for referencing device later

AT_H Handle;

//Open the first device (Device 0)

AT_Open(0, &Handle);

//Close the device when finished using it

AT_Close(Handle);

//Call FinaliseLibrary when all access to API is complete

AT_FinaliseLibrary();

The final code for this tutorial can be seen in section “Code Listing for Tutorial” in the Appendix.

Page 17

 V2.6 June 2016 andor.com

SDK 3

2.1.2 SIMPLE SINGLE FRAME ACQUISITION
AT_InitialiseLibrary();

AT_H Handle;

AT_Open(0, &Handle);

//Set the exposure time for this camera to 10 milliseconds

AT_SetFloat(Handle, L”ExposureTime”, 0.01);

//Get the number of bytes required to store one frame

AT_64 ImageSizeBytes;

AT_GetInt(Handle, L"ImageSizeBytes", &ImageSizeBytes);

int BufferSize = static_cast<int>(ImageSizeBytes);

//Allocate a memory buffer to store one frame

unsigned char* UserBuffer = new unsigned char[BufferSize];

//Pass this buffer to the SDK

AT_QueueBuffer(Handle, UserBuffer, BufferSize);

//Start the Acquisition running

AT_Command(Handle, L"AcquisitionStart");

//Sleep in this thread until data is ready, in this case set

//the timeout to infinite for simplicity

unsigned char* Buffer;

AT_WaitBuffer(Handle, &Buffer, &BufferSize, AT_INFINITE);

//Stop the acquisition

AT_Command(Handle, L"AcquisitionStop");

AT_Flush(Handle);

//Application specific data processing goes here..

//Free the allocated buffer

delete [] UserBuffer;

AT_Close(Handle);

AT_Close(Handle);

AT_FinaliseLibrary();

2.1.3 USING A FEATURE
AT_InitialiseLibrary();

AT_H Handle;

AT_Open(0, &Handle);

AT_BOOL Implemented;

//To determine if Exposure time is implemented by the camera

AT_IsImplemented(Handle, L"ExposureTime", &Implemented);

AT_BOOL ReadOnly;

//To determine if Exposure time a Read Only Feature

AT_IsReadOnly(Handle, L"ExposureTime", &ReadOnly);

if (Implemented==AT_TRUE) {

Page 18

 V2.6 June 2016 andor.com

SDK 3

 //Get the Limits for Exposure Time

 double Min, Max;

 AT_GetFloatMin(Handle, L"ExposureTime", &Min);

 AT_GetFloatMax(Handle, L"ExposureTime", &Max);

 //Get the current accessibility

 AT_BOOL Writable, Readable;

 AT_IsWritable(Handle, L"ExposureTime", &Writable);

 AT_IsReadable(Handle, L"ExposureTime", &Readable);

 if (Readable==AT_TRUE) {

 //To get the current value of Exposure time in

 //microseconds

 double ExposureTime;

 AT_GetFloat(Handle, L"ExposureTime", &ExposureTime);

 }

 if (Writable==AT_TRUE) {

 //To set the value of Exposure Time to 10

 //microseconds

 AT_SetFloat(Handle, L"ExposureTime", 0.00001);

 }

}

AT_Close(Handle);

AT_FinaliseLibrary();

2.1.4 CIRCULAR BUFFER
AT_InitialiseLibrary();

AT_H Handle;

AT_Open(0, &Handle);

AT_SetFloat(Handle, L"ExposureTime", 0.01);

AT_64 ImageSizeBytes;

AT_GetInt(Handle, L"ImageSizeBytes", &ImageSizeBytes);

int BufferSize = static_cast<int>(ImageSizeBytes);

//Declare the number of buffers and the number of frames interested in

int NumberOfBuffers = 10;

int NumberOfFrames = 100;

//Allocate a number of memory buffers to store frames

unsigned char** AcqBuffers = new unsigned char*[NumberOfBuffers];

unsigned char** AlignedBuffers = new unsigned char*[NumberOfBuffers];

for (int i=0; i < NumberOfBuffers; i++) {

 AcqBuffers[i] = new unsigned char[BufferSize + 7];

 AlignedBuffers[i] = reinterpret_cast<unsigned char*>((reinterpret_cast<unsigned

long>(AcqBuffers[i% NumberOfBuffers]) + 7) & ~7);

}

//Pass these buffers to the SDK

for(int i=0; i < NumberOfBuffers; i++) {

 AT_QueueBuffer(Handle, AlignedBuffers[i], BufferSize);

}

Page 19

 V2.6 June 2016 andor.com

SDK 3

//Set the camera to continuously acquires frames

AT_SetEnumString(Handle, L"CycleMode", L"Continuous");

//Start the Acquisition running

AT_Command(Handle, L"AcquisitionStart");

//Sleep in this thread until data is ready, in this case set

//the timeout to infinite for simplicity

unsigned char* pBuf;

int BufSize;

for (int i=0; i < NumberOfFrames; i++) {

 AT_WaitBuffer(Handle, &pBuf, &BufSize, AT_INFINITE);

 //Application specific data processing goes here..

 //Re-queue the buffers

 AT_QueueBuffer(Handle, AlignedBuffers[i%NumberOfBuffers], BufferSize);

}

//Stop the acquisition

AT_Command(Handle, L"AcquisitionStop");

AT_Flush(Handle);

//Application specific data processing goes here..

//Free the allocated buffer

for (int i=0; i < NumberOfBuffers; i++) {

 delete[] AcqBuffers[i];

}

delete[] AlignedBuffers;

delete[] AcqBuffers;

AT_Close(Handle);

AT_FinaliseLibrary();

2.1.7 PIXEL ENCODING
#define EXTRACTLOWPACKED(SourcePtr) ((SourcePtr[0] << 4) + (SourcePtr[1] & 0xF))

#define EXTRACTHIGHPACKED(SourcePtr) ((SourcePtr[2] << 4) + (SourcePtr[1] >> 4))

AT_InitialiseLibrary();

AT_H Handle;

AT_Open(0, &Handle);

//Set the pixel Encoding to the desired settings Mono12Packed Data

AT_SetEnumString(Handle, L"PixelEncoding", L"Mono12Packed");

AT_64 ImageSizeBytes;

AT_GetInt(Handle, L"ImageSizeBytes", &ImageSizeBytes);

int BufferSize = static_cast<int>(ImageSizeBytes);

unsigned char* UserBuffer = new unsigned char[BufferSize];

AT_QueueBuffer(Handle, UserBuffer, BufferSize);

AT_Command(Handle, L"AcquisitionStart");

unsigned char* Buffer;

AT_WaitBuffer(Handle, &Buffer, &BufferSize, AT_INFINITE);

Page 20

 V2.6 June 2016 andor.com

SDK 3

//Stop the acquisition

AT_Command(Handle, L"AcquisitionStop");

AT_Flush(Handle);

//Unpack the 12 bit packed data

for (int i=0; i < BufferSize; i+=3) {

 AT_64 LowPixel = EXTRACTLOWPACKED(Buffer);

 AT_64 HighPixel = EXTRACTHIGHPACKED(Buffer);

 //Application specific data processing goes here..

 Buffer += 3;

}

delete [] UserBuffer;

AT_Close(Handle);

AT_FinaliseLibrary();

2.1.8 CALL-BACKS
//This example will demonstrate how to setup, register and unregister a call-back

//Tests of the correct call-back context and a count of the number of updates received

are provided

AT_H Handle;

int g_iCallbackCount = 0;

int g_iCallbackContext = 0;

int AT_EXP_CONV Callback(AT_H Hndl, const AT_WC* Feature, void* Context)

{

 //Application specific call-back handling should go here

 g_iCallbackCount++;

 g_iCallbackContext = *reinterpret_cast<int*>(Context);

 return AT_CALLBACK_SUCCESS;

}

int main(int argc, char* argv[])

{

 AT_InitialiseLibrary();

 AT_Open(0, &Handle);

 //Set the call-back context, context values can be defined on per application basis

 int i_callbackContext = 5;

 //Reset the call-back count

 //Only required for the purposes of this example to show the call-back has been

received

 g_iCallbackCount = 0;

 //Register a call-back for the given feature

 AT_RegisterFeatureCallback(Handle, L"PixelReadoutRate", Callback,

(void*)&i_callbackContext);

 //Set the feature in order to trigger the call-back

 AT_SetEnumIndex(Handle, L"PixelReadoutRate", 0);

 // Application specific code should go here

 //For this example we shall check that the call-back has been successful

Page 21

 V2.6 June 2016 andor.com

SDK 3

 if (g_iCallbackCount==0 || g_iCallbackContext != i_callbackContext) {

 //Deal with failed call-back

 }

 //Unregister the call-back, no more updates will be received

 AT_UnregisterFeatureCallback(Handle, L"PixelReadoutRate", Callback,

(void*)&i_callbackContext);

 AT_Close(Handle);

 AT_FinaliseLibrary();

}

2.1.9 METADATA

The following examples illustrate enabling metadata when taking acquisitions, however, they do not show how to
correcty parse the results. For more details on parsing metadata refer to the metadataparser example located in the
examples folder of the SDK3 installation directory.

Toggle Metadata
…

 int i_returnCode;
 AT_BOOL i_metadataEnabled;

 i_returnCode = AT_GetBool(Hndl, L"MetadataEnable", &i_metadataEnabled);

 if (i_returnCode != AT_SUCCESS) {

 // Problem getting state of metadata

 }

 i_metadataEnabled = (i_metadataEnabled == AT_FALSE) ? AT_TRUE : AT_FALSE;

 i_returnCode = AT_SetBool(Hndl, L"MetadataEnable", i_metadataEnabled);

 if (i_returnCode != AT_SUCCESS) {

 // Problem enabling metadata

 }

…

Parsing Timestamp
…

#define LENGTH_FIELD_SIZE 4

#define CID_FIELD_SIZE 4

#define TIMESTAMP_FIELD_SIZE 8

// Setup environment. (See example in appendix).

...

// Take an acquisition. (See example in appendix).

unsigned char* puc_image;

...

// Get image size.

AT_64 ImageSizeBytes;

AT_GetInt(Hndl, L"ImageSizeBytes", &ImageSizeBytes);

int i_imageSize = static_cast<int>(ImageSizeBytes);

// Move to end of image. This is assuming reading metadata right to left.

unsigned char* puc_metadata = puc_image + i_imageSize;

// Extract length field from end.

int i_length = *(reinterpret_cast<int*>(puc_metadata - LENGTH_FIELD_SIZE));

// Move to start of timestamp information. Note that this example assumes that

Page 22

 V2.6 June 2016 andor.com

SDK 3

// timestamps is the first metadata block. Real code should search for the

// timestamp CID

int i_offset = LENGTH_FIELD_SIZE + CID_FIELD_SIZE + TIMESTAMP_FIELD_SIZE;

AT_64 au64_timestamp = *(reinterpret_cast<andoru64*>(puc_metadata – i_offset));

// Tear down environment. (See example in appendix).

…

Parsing Frame Info
…

#define LENGTH_FIELD_SIZE 4

#define CID_FIELD_SIZE 4

#define FRAMEINFO_FIELD_SIZE 8

// Setup environment. (See example in appendix).

...

// Take an acquisition. (See example in appendix).

unsigned char* puc_image;

...

// Get image size.

AT_64 ImageSizeBytes;

AT_GetInt(Hndl, L"ImageSizeBytes", &ImageSizeBytes);

int i_imageSize = static_cast<int>(ImageSizeBytes);

// Move to end of image. This is assuming reading metadata right to left.

unsigned char* puc_metadata = puc_image + i_imageSize;

// Extract length field from end.

int i_length = *(reinterpret_cast<int*>(puc_metadata - LENGTH_FIELD_SIZE));

// Move to start of frame info information. Note that this example assumes that

// frame info is the first metadata block. Real code should search for the

// frame info CID

int i_offset = LENGTH_FIELD_SIZE + CID_FIELD_SIZE + FRAMEINFO_FIELD_SIZE;

AT_64 au64_frameInfo = *(reinterpret_cast<andoru64*>(puc_metadata – i_offset));

AT_64 au64_stride = static_cast<AT_64>(au64_frameInfo & 0xFFFF);

au64_frameInfo = au64_frameInfo >> 16;

AT_64 au64_pixelEncoding = static_cast<AT_64>(au64_frameInfo & 0xFF);

au64_frameInfo = au64_frameInfo >> 16;

AT_64 au64_aoiWidth = static_cast<AT_64>(au64_frameInfo & 0xFFFF);

au64_frameInfo = au64_frameInfo >> 16;

AT_64 au64_aoiHeight = static_cast<AT_64>(au64_frameInfo & 0xFFFF);

// Tear down environment. (See example in appendix).

Page 23

 V2.6 June 2016 andor.com

SDK 3

2.1.10 BINNING

Configure Binning for SCMOS

int i_returnCode;

 i_returnCode = AT_SetEnumString(Hndl, L"AOIBinning", L"3x3");

 if (i_returnCode != AT_SUCCESS) {

 // Problem setting binning

 }

2.1.11 ACQUISITION EVENTS
// Setup environment. (See example in appendix).

…

// Enable Exposure End Events

int returnCode = AT_SetEnumString(Handle, L"EventSelector",

 L"ExposureEndEvent");

if (AT_SUCCESS != returnCode) {

 // Problem selecting Exposure End Event

}

returnCode = AT_SetBool(Handle, L"EventEnable", AT_TRUE);

if (AT_SUCCESS != returnCode) {

 // Problem enabling Exposure End Event

}

// Register a Callback for Exposure End Events. (See Callback example)

AT_RegisterFeatureCallback(Handle, L"ExposureEndEvent”, Callback, NULL);

// Take an acquisition. (See example in appendix).

…

// Disable Exposure End Event

returnCode = AT_SetBool(Handle, L"EventEnable", AT_FALSE);

if (AT_SUCCESS != returnCode) {

 // Problem disabling Exposure End Event

}

AT_UnregisterFeatureCallback(Handle, L"ExposureEndEvent", Callback, NULL);

// Tear down environment. (See example in appendix).

2.1.12 FAST EXPOSURE SWITCHING

The exposure time can be changed during an acquisition without first stopping the camera to apply the new time.
However, some limitations apply to the fast-switchable exposure range. Thus, some exposure times cannot be set
whilst an acquisition is running, and a restart will be required. To determine if a restart is required, establish the min
and max values using the following commands:

AT_GetFloatMin(handle, L“ExposureTime”, &minExposureTime);
AT_GetFloatMax(handle, L“ExposureTime”, &maxExposureTime);

If the exposure time to be set is within the min and max boundaries, no restart will be required, and can be set during
the acquisition. Values outside this range cannot be set whilst the acquisition is running.

Page 24

 V2.6 June 2016 andor.com

SDK 3

2.2 ESD RECOVERY

An effective solution and recovery from an ESD strike to the ZYLA USB3 camera relies on the user application’s ability
to respond to SDK error codes and callbacks correctly.

The following table outlines the corrective actions that must be taken by the user application to recover from an ESD
strike that has led to loss of frames and errors as a result.

The solution consists of 3 parts:

1. Zyla FX3 microcode version 1.09.0 or greater
2. SDK3 upgrade version 3.12.30000 or greater
3. Higher-level software application recommendations

Refer to table below for details of scenarios where user software application action is recommended.

Acquisition
Type

Possible ESD Strike Effect (SDK3
application)

Recommended
Detection

Recommended Action

None (idle) None, camera will be automatically
re-acquired and remain in the idle
state.

Register a callback on the
CameraPresent feature

None

Software
Triggered

The software trigger may be lost or
frame data may be corrupted or
dropped. AT_WaitBuffer will timeout
for one or more of the frames that
have been dropped.

Register a callback on the
CameraPresent feature

When camera has finished restarting
(CameraPresent is true), abort and
restart the acquisition. N.B. it is not
sufficient to send another software
trigger.

Externally
(TTL) Triggered

Frame data may be corrupted or
dropped. AT_WaitBuffer will timeout
for one or more of the frames that
have been dropped.

Register a callback on the
CameraPresent feature

When camera has finished restarting
(CameraPresent is true), abort and
restart the acquisition.

Internally
Triggered (free-
running)

Frame data may be corrupted or
dropped but may not time out. A gap
will be noticeable in the camera's
metadata (hardware timestamps).

Register a callback on the
CameraPresent feature

When camera has finished restarting
(CameraPresent is true), abort and
restart the acquisition.

Page 25

 V2.6 June 2016 andor.com

SDK 3

SECTION 3 API (APPLICATION PROGRAM INTERFACE)

3.1 OVERVIEW

The SDK3 API can be divided into several sets of functions, each controlling a particular aspect of camera control.
There are sections in the API for opening a handle to a camera, for buffer management and for accessing the features
that every camera exposes. Each feature that a camera exposes to the user has a particular type that represents how
that feature is controlled. The feature types are:

 Integer

 Floating Point

 Boolean

 Enumerated

 Command

 String

For example:

 Exposure Time feature: Floating Point

 Acquisition Start feature: Command

Each of these feature types, the management of multiple cameras and buffer management are described in the
sections below. The character type used by the API is a 16 bit wide character defined by the AT_WC type, which is
used to represent all feature names, enumerated options and string feature values.

3.2 FUNCTION LISTING
int AT_InitialiseLibrary();

int AT_FinaliseLibrary();

int AT_Open(int DeviceIndex, AT_H* Handle);

int AT_Close(AT_H Hndl);

typedef int (*FeatureCallback)(AT_H Hndl, AT_WC* Feature, void* Context);

int AT_RegisterFeatureCallback(AT_H Hndl, AT_WC* Feature, FeatureCallback EvCallback,

void* Context);

int AT_UnregisterFeatureCallback(AT_H Hndl, AT_WC* Feature, FeatureCallback EvCallback,

void* Context);

int AT_IsImplemented(AT_H Hndl, AT_WC* Feature, AT_BOOL* Implemented);

int AT_IsReadOnly(AT_H Hndl, AT_WC* Feature, AT_BOOL* ReadOnly);

int AT_IsReadable(AT_H Hndl, AT_WC* Feature, AT_BOOL* Readable);

int AT_IsWritable(AT_H Hndl, AT_WC* Feature, AT_BOOL* Writable);

int AT_SetInt(AT_H Hndl, AT_WC* Feature, AT_64 Value);

int AT_GetInt(AT_H Hndl, AT_WC* Feature, AT_64* Value);

int AT_GetIntMax(AT_H Hndl, AT_WC* Feature, AT_64* MaxValue);

int AT_GetIntMin(AT_H Hndl, AT_WC* Feature, AT_64* MinValue);

int AT_SetFloat(AT_H Hndl, AT_WC* Feature, double Value);

int AT_GetFloat(AT_H Hndl, AT_WC* Feature, double* Value);

int AT_GetFloatMax(AT_H Hndl, AT_WC* Feature, double* MaxValue);

int AT_GetFloatMin(AT_H Hndl, AT_WC* Feature, double* MinValue);

Wide Characters

An example of converting wide character strings to char strings can be found in the appendix.

Page 26

 V2.6 June 2016 andor.com

SDK 3

int AT_SetBool(AT_H Hndl, AT_WC* Feature, AT_BOOL Value);

int AT_GetBool(AT_H Hndl, AT_WC* Feature, AT_BOOL* Value);

int AT_SetEnumIndex(AT_H Hndl, AT_WC* Feature, int Value);

int AT_SetEnumString(AT_H Hndl, AT_WC* Feature, AT_WC* String);

int AT_GetEnumIndex(AT_H Hndl, AT_WC* Feature, int* Value);

int AT_GetEnumCount(AT_H Hndl, AT_WC* Feature, int* Count);

int AT_IsEnumIndexAvailable(AT_H Hndl, AT_WC* Feature, int Index, AT_BOOL* Available);

int AT_IsEnumIndexImplemented(AT_H Hndl, AT_WC* Feature, int Index, AT_BOOL*

Implemented);

int AT_GetEnumStringByIndex(AT_H Hndl, AT_WC* Feature, int Index, AT_WC* String, int

StringLength);

int AT_Command(AT_H Hndl, AT_WC* Feature);

int AT_SetString(AT_H Hndl, AT_WC* Feature, AT_WC* Value);

int AT_GetString(AT_H Hndl, AT_WC* Feature, AT_WC* Value, int StringLength);

int AT_GetStringMaxLength(AT_H Hndl, AT_WC* Feature, int* MaxStringLength);

int AT_QueueBuffer(AT_H Hndl, AT_U8* Ptr, int PtrSize);

int AT_WaitBuffer(AT_H Hndl, AT_U8** Ptr, int* PtrSize, unsigned int Timeout);

int AT_Flush(AT_H Hndl);

3.3 API DESCRIPTION

3.3.1 LIBRARY INITIALIZATION

The first API function call made by any application using SDK3 must be:

AT_InitialiseLibrary()

This allows SDK to setup its internal data structures and to detect any cameras that are attached. AT_InitialiseLibrary
takes no parameters.

Before your application closes or when you no longer wish to access the API you should call the function:

AT_FinaliseLibrary()

This cleans up any data structures held internally by SDK.

3.3.2 OPENING A CAMERA HANDLE

To access the features provided by a camera and to acquire images you must first open a handle. A camera handle,
represented by the data type AT_H, is a reference to the particular camera that you wish to control and is passed as
the first parameter to most other functions in the SDK. In multi-camera environments the handle becomes particularly
useful as it allows cameras to be controlled simultaneously in a thread safe manner. To open a handle to a camera
you should pass the index of the camera that you wish to access, to the function:

AT_Open(int DeviceIndex, AT_H* Handle)

The handle will be returned in the Handle parameter which is passed by address. To open the first camera you should
pass a value of 0 to the DeviceIndex parameter, for the second camera pass a value of 1 etc.

Once you have finished with the camera it should be closed using the function:

AT_Close(AT_H Handle)

Page 27

 V2.6 June 2016 andor.com

SDK 3

The only parameter to this function is the handle of the camera that you wish to release.

System Handle

There are some features of the system that are not connected to a specific camera but are global properties. For
example, the Device Count feature stores a count of the number of devices that are currently connected. To access
these features you do not need to open a handle to a camera, instead you should use the system handle represented
by the constant AT_HANDLE_SYSTEM. You do not need to retrieve this handle using the AT_Open function; it is
predefined and can be used immediately after the AT_InitialiseLibrary function has completed.

Thread Safety

SDK3 is thread safe when accessing different cameras on different threads. However you should not use multiple
threads at once to access the features of the same camera. The exception to this is that the AT_WaitBuffer and
AT_QueueBuffer functions can be called simultaneously on separate threads, with the same camera handle, during
acquisition.

3.3.3 INTEGER FEATURES

Integer features are those that can be represented by a single integer value. For example, the number of images in
the sequence that you wish to acquire is represented by the Integer feature FrameCount. To set an Integer feature use
the function:

AT_SetInt(AT_H Hndl, AT_WC* Feature, AT_64 Value)

The first parameter is the handle to the camera that is exposing the desired feature; the second parameter is a wide
character string indicating the name of the feature that you wish to modify. The full list of feature strings is available in
the Feature Reference section. The third parameter contains the value that you want to assign to the feature. The
function will return a value indicating whether the function successfully applied the value. The Error Codes (Section
3.4 Error Codes) lists the possible error codes that can be returned from the Integer Type functions.

To get the current value for an Integer feature use the function:

AT_GetInt(AT_H Hndl, AT_WC* Feature, AT_64 * Value)

The first two parameters are the camera handle and the feature name, the same as those passed to the AT_SetInt
function. The third parameter is the address of the variable into which you want to store the Integer value.

Integer features can sometimes be restricted in the range of values that they can be set to. This range of possible
values can be determined by using the functions:

AT_GetIntMax(AT_H Hndl, AT_WC* Feature, AT_64 * MaxValue)

AT_GetIntMin(AT_H Hndl, AT_WC* Feature, AT_64 * MinValue)

These functions work similarly to the AT_GetInt function except that the third parameter returns either the highest
allowable value or the lowest allowable value. Using these maximum and minimum values you can check which
values are allowed by AT_SetInt without having to monitor its return code. This can be useful, for example, when you
wish to limit the range of possible values that the user can enter in a GUI application. Note that the maximum and
minimum of an Integer feature may change if other dependent features values are modified, for example, the
maximum frame rate will decrease as the exposure time is increased. You can use the feature notification mechanism
described in a later section to find out when this happens.

3.3.4 FLOATING POINT FEATURES

Floating Point type features work in a similar way to Integer features, in that they have a Set function and Get
function and GetMin and GetMax functions. Floating Point features represent those features that are expressed with a

Page 28

 V2.6 June 2016 andor.com

SDK 3

value that contains a decimal point. As an example, the Exposure Time feature is exposed through the Floating Point
functions. The functions are:

AT_SetFloat(AT_H Hndl, AT_WC* Feature, double Value)

AT_GetFloat(AT_H Hndl, AT_WC* Feature, double * Value)

AT_GetFloatMax(AT_H Hndl, AT_WC* Feature, double * MaxValue)

AT_GetFloatMin(AT_H Hndl, AT_WC* Feature, double * MinValue)

The first parameter to each of these functions is the camera handle, the second parameter is the name of the feature
and the third parameter contains either the value that you wish to set or the address of a variable that will return the
current value, maximum or minimum of the feature. The list of possible error codes is described in the Error Codes
Section 3.4 Error Codes. Note that the maximum and minimum of a Floating Point feature may change if other
dependent features values are modified, you can use the feature notification mechanism described in later section to
find out when this happens.

3.3.5 BOOLEAN FEATURES

Boolean features can only be set to one of two possible values, representing the logical states true and false. True is
represented by the value AT_TRUE and false by the value AT_FALSE. An example of a boolean feature is the Sensor
Cooling feature which can be used to switch the cooler on the camera on or off. To change the state of a boolean
feature use the function:

AT_SetBool(AT_H Hndl, AT_WC* Feature, AT_BOOL Value)

The first parameter is a handle to the camera being used, the second parameter is the string descriptor of the feature
to change and the third parameter is the value. So to enable a boolean feature pass a value of AT_TRUE, to disable a
boolean feature, pass a value of AT_FALSE in the third parameter. To retrieve the current state of a boolean feature,
use the function:

AT_GetBool(AT_H Hndl, AT_WC* Feature, AT_BOOL* Value)

For this function the third parameter contains the address of the variable into which you want the state stored. A value
of AT_FALSE means the feature is disabled, while a value of AT_TRUE means the feature is enabled.

3.3.6 ENUMERATED FEATURES

Enumerated features are used to represent those features that can be assigned one value from a set of possible
options. For example, the triggering mode that you wish to use with the camera is set using the TriggerMode
enumerated feature. The triggering mode setting can be chosen from a number of options, for example, internal,
external or external start. The enumerated feature functions allow you to:

 Determine how many options are available

 Select which option you wish to use

 Retrieve a human readable representation of each option.

Enumerated options can be set either by their text value or by index, using the functions:

AT_SetEnumIndex(AT_H Hndl, AT_WC* Feature, int Index)

AT_SetEnumString(AT_H Hndl, AT_WC* Feature, AT_WC* String)

The first function changes the current item to the one that lies at the position specified by the Index parameter, where
an Index of 0 is the first item. The second function lets you specify the string descriptor for the particular option that
you wish to use. String Descriptors for all features are described in the Feature Reference Section 4.2 Feature
Reference. As for all feature access functions the first two parameters are the camera handle and the string descriptor
of the feature that you wish to modify. The choice of which function to use will depend on your particular application
and they can both be used in the same program.

Page 29

 V2.6 June 2016 andor.com

SDK 3

To find out which option is currently selected for an enumerated feature, you can use the function:

AT_GetEnumIndex(AT_H Hndl, AT_WC* Feature, int* Value)

The third parameter is the address of the variable where you want the currently selected index stored.

To find out how many options there are available for the feature, use the function:

AT_GetEnumCount(AT_H Hndl, AT_WC* Feature, int* Count)

The third parameter, on return, will contain the number of possible options. If you attempt to select an option using
AT_SetEnumIndex with an index either below zero or above or equal to this count an error will be returned.

You can retrieve the string descriptor for any option by calling the function:

AT_GetEnumStringByIndex(AT_H Hndl, AT_WC* Feature, int Index, AT_WC* String,

 int StringLength)

The third parameter is the index of the option that you want to receive the descriptor for, the fourth parameter is a user
allocated buffer to receive the descriptor and the fifth parameter is the length of the allocated buffer.

Enumerated Index Availability

In some situations one or more of the options listed for an enumerated feature may be either permanently or
temporarily unavailable. An option may be permanently unavailable if the camera does not support this option, or
temporarily unavailable if the current value of other features do not allow this option to be selected. To find out which
options are available you can use the functions:

AT_IsEnumIndexAvailable(AT_H Hndl, AT_WC* Feature, int Index, AT_BOOL* Available)

AT_IsEnumIndexImplemented(AT_H Hndl, AT_WC* Feature, int Index,

 AT_BOOL* Implemented)

Both functions take the index of the option that you want to interrogate in the third parameter. The first function
determines if the option is only temporarily unavailable, the second function determines if the feature is permanently
unavailable. The fourth parameter returns the availability status, a value of AT_FALSE means unavailable, and a value
of AT_TRUE means the option is available. If you try to select an option that is unavailable using either of the set
functions then an error will be returned.

3.3.7 COMMAND FEATURES

Command features are those that represent a single action. For example, to start the camera acquiring you will use
the Command feature Acquisition Start. These commands do not require any extra parameters and are simply called
by passing the string descriptor of the command to the function:

AT_Command(AT_H Hndl, AT_WC* Feature)

The function call is blocking so when the function returns, the action is complete.

Enumerated Indexes

The particular index that maps to an enumerated option may be different across SDK versions and across

different cameras. To ensure best compatibility for your application you should use strings wherever possible and

avoid assuming that a specific option is found at a particular index.

Page 30

 V2.6 June 2016 andor.com

SDK 3

3.3.8 STRING FEATURES

String features are those that can be represented by 1 or more characters. An example of a String feature is the
Serial Number of the camera. In many cases these features are read only but if they are writable, you can set the
value using the function:

AT_SetString(AT_H Hndl, AT_WC* Feature, AT_WC* Value)

The first parameter contains the camera handle, the second parameter is the string descriptor of the feature, and the
third parameter is the character string that you want to assign to the feature.

To retrieve the value of a String feature use the function:

AT_GetString(AT_H Hndl, AT_WC* Feature, AT_WC* Value, int StringLength)

In this case the third parameter should be a caller allocated character string that will be used to receive the string. The
fourth parameter is the length of the caller allocated buffer. To determine what length of string that should be allocated
to receive the string value you can use the function:

AT_GetStringMaxLength(AT_H Hndl, AT_WC* Feature, int* MaxStringLength)

The maximum length of the String feature will be returned in the third parameter.

3.3.9 BUFFER MANAGEMENT

SDK maintains two queues for each camera, which are used to manage the transfer of image data to the application.
Both queues operate in a First-in-First-out (FIFO) basis and are used to store the addresses of blocks of memory
allocated by the application.

Queuing
The first queue, the input queue, which is written into by the application and read from by the SDK, is used to store the
memory buffers that have not yet been filled with image data. This queue is accessed using the function:

AT_QueueBuffer(AT_H Hndl, AT_U8 * Ptr, int PtrSize)

The first parameter contains the handle to the camera. The second parameter is the address of an application
allocated buffer large enough to store a single image. The PtrSize parameter should contain the size of the buffer that
is being queued. The required size of the buffer can be obtained by reading the value of the ImageSizeBytes integer
feature. The AT_QueueBuffer function can be called multiple times with different buffers, to allow a backlog of buffers
to be stored by the SDK. By doing this the SDK can be copying image data into these buffers while the application is
processing previous images.

Waiting
The second queue is the output queue and is used to store the application defined buffers after they have had images
copied into them. In this case the SDK adds buffers to this queue which can then be retrieved by the application. This
application can retrieve the processed buffers from this queue by using the function:

AT_WaitBuffer(AT_H Hndl, AT_U8 ** Ptr, int* PtrSize, unsigned int Timeout)

The AT_WaitBuffer function will retrieve the next buffer from the output queue and return the address in the second
parameter; the size of the buffer will also be returned in the PtrSize parameter. As both of these parameters are

Buffer Alignment

Any buffers queued to the SDK using the AT_QueueBuffer function should have their address aligned to an 8-

byte boundary. The examples shown later in this manual demonstrate how this can be done if your compiler

does not do this for you automatically when creating the buffer.

Page 31

 V2.6 June 2016 andor.com

SDK 3

outputs from the function, they are passed in by address. If there are no buffers currently in the output queue, the
AT_WaitBuffer function will put the calling thread to sleep until a buffer arrives. The thread will sleep until either a
buffer arrives or the time specified by the Timeout parameter expires. The Timeout parameter is specified in
milliseconds and can be any value between 0 and the constant AT_INFINITE. If a value of zero is used then the
function will simply test the output queue for available buffers and return immediately. If the value is AT_INFINITE,
then the function will sleep indefinitely until data arrives at the output queue; any value in between will be used as a
millisecond timeout for the function.

Flushing
The input and output queues are not automatically flushed when an acquisition either completes normally or is
stopped prematurely. Any buffers remaining in the input queue will be used during the next acquisition and any buffers
in the output queue are still available to be retrieved by the application. If you wish to clear the two queues at any time
then you should call the function below. If this function is not called after an acquisition is complete, then the remaining
buffers will be used the next time an acquisition is started and may lead to undefined behaviour.

AT_Flush(AT_H Hndl)

3.3.10 FEATURE ACCESS CONTROL

The individual access rights of features can be determined using a set of functions that apply to all features,
independent of their type. The four access characteristics of a feature are:

 Whether a feature is implemented by a camera.

 Whether a feature is read only.

 Whether a feature can currently be read.

 Whether a feature can currently be modified.

The first two access rights are permanent characteristics of the feature, the second two access rights may change
during the running of the program. For example, if other features are modified in such a way as to affect this feature. If
a feature is not implemented by a camera then any attempt to access that feature will return the error code

AT_ERR_NOTIMPLEMENTED. Any attempt to modify a read only feature will result in the error code

AT_ERR_READONLY. If a feature cannot be currently read then any attempt to get the current value will return the

AT_ERR_NOTREADABLE error code and any attempt to modify a value that cannot currently be written to will return the

error code AT_ERR_NOTWRITABLE.

To determine if a feature has been implemented use the function:

AT_IsImplemented(AT_H Hndl, AT_WC* Feature, AT_BOOL* Implemented)

The first two parameters are, as usual, the handle to the camera and the string descriptor of the feature. The third
parameter is an output parameter which returns with a value indicating whether the feature is implemented or not. If
Implemented contains the value AT_TRUE, on return from the function then the feature is implemented, if it returns
with the value AT_FALSE, then the feature is not implemented.

To determine if a feature is read only, use the function:

AT_IsReadOnly(AT_H Hndl, AT_WC* Feature, AT_BOOL* ReadOnly)

Acquisition Control

See the descriptions of the Acquisition Start and Acquisition Stop command features for information on running

an acquisition on the camera.

Page 32

 V2.6 June 2016 andor.com

SDK 3

This function works in a similar way to AT_IsImplemented, that is, if the ReadOnly parameter returns with the value
AT_TRUE then the feature is read only, a value of AT_FALSE indicates that it can be modified. SerialNumber is an
example of a feature that is read only.

To determine if a feature is currently readable, use the function:

AT_IsReadable(AT_H Hndl, AT_WC* Feature, AT_BOOL* Readable)

The Readable parameter indicates whether the feature is currently readable in the same manner as the ReadOnly
parameter to the function AT_IsReadOnly.

To determine if a feature is currently writable use the function:

AT_IsWritable(AT_H Hndl, AT_WC* Feature, AT_BOOL* Writable)

An example of the use of this function is to allow a GUI application to disable access to features when they cannot be
modified, for example, whilst an acquisition is running.

3.3.11 FEATURE NOTIFICATIONS

Sometimes a feature may change its value or its other characteristics, not as a direct result of the user modifying the
feature, but indirectly through modification of a separate feature. For example, if the Trigger Mode feature is set to
External trigger, then the Frame Rate feature’s writable access characteristic will be disabled (see Feature Access
Control above), as the frame rate is now controlled by the rate at which the external trigger is applied, and not by the
application setting.

To allow the application to receive notification when this type of indirect change occurs, there are functions provided in
the API that allow the application to create a callback function and attach it to a feature. Whenever the feature
changes in any way, this callback will be triggered, allowing the application to carry out any actions required to
respond to the change. For example, if an application provides a GUI interface that allows users to modify features,
then the callback can update the GUI with any changes. This facilitates use of the Observer design pattern in your
application. The callback will also be triggered if the feature is modified directly by the application.

The definition of the callback function implemented by the application should be in the format:

int AT_EXP_CONV MyCallback(AT_H Hndl, const AT_WC* Feature, void* Context)

{

 // Perform action

}

There are three parameters sent to the function that allow the application to determine the reason for the call-back.
The first parameter indicates which camera caused the call-back. By using this parameter you can make use of the
same call-back function for multiple cameras. The second parameter holds the string descriptor of the feature that has
been modified in some way, and allows the same call-back function to be used with multiple features. The final
parameter is an application defined context parameter that was passed in as a parameter at the time that the call-back
function was registered. The Context parameter is not parsed in any way by the SDK and can be used to store any
information that the application wishes.

Note that the AT_EXP_CONV modifier must be present and ensures that the correct calling convention is used by the
SDK.

To register the call-back function, use the function:

AT_RegisterFeatureCallback(AT_H Hndl, AT_WC* Feature, FeatureCallback EvCallback, void*

Context)

The first parameter is the camera handle, the second parameter is the string descriptor of the feature that you wish to
receive notifications for. The third parameter is your call-back function that you have defined as described above and

Page 33

 V2.6 June 2016 andor.com

SDK 3

the fourth parameter in the Context parameter that will be passed to the call-back each time it is called. Whenever the
application no longer requires notifications for a particular feature, it should release the call-back by calling the
function:

AT_UnregisterFeatureCallback(AT_H Hndl, AT_WC* Feature, FeatureCallback EvCallback,

void* Context)

The same parameters should be passed to this function as were passed to the AT_RegisterFeatureCallback.

You need to register a call-back individually for each feature that you are interested in, but the same call-back function
can be used for all or some features, or, a separate call-back function can be provided for each feature.

Notes on implementing call-backs

A call-back should complete any work required in the minimal amount of time as it holds up the thread that

caused the call-back. If possible the application should delegate any work to a separate application thread if

the action will take a significant amount of time.

The call-back function should not attempt to modify the value of any feature as this can cause lockup.

Page 34

 V2.6 June 2016 andor.com

SDK 3

3.4 ERROR CODES

Find below the available return codes and their values for each feature type and the buffer control functions.

Device Connection Description
AT_SUCCESS (0) Function call has been successful
AT_ERR_NONINITIALISED (1) Function called with an uninitialized handle
AT_ERR_CONNECTION (10) Error connecting to or disconnecting from hardware
AT_ERR_INVALIDHANDLE (12) Invalid device handle passed to function
AT_ERR_NULL_HANDLE (21) Null device handle passed to function
AT_ERR_NOMEMORY (37) No memory has been allocated for the current action
AT_ERR_DEVICEINUSE (38) Function failed to connect to a device because it is already being used

String Feature Description
AT_SUCCESS (0) Function call has been successful
AT_ERR_NOTIMPLEMENTED (2) Feature has not been implemented for the chosen camera
AT_ERR_READONLY (3) Feature is read only
AT_ERR_NOTWRITABLE (5) Feature is currently not writable
AT_ERR_NOTREADABLE (4) Feature is currently not readable
AT_ERR_EXCEEDEDMAXSTRINGLENGTH (9) String value provided exceeds the maximum allowed length
AT_ERR_NULL_FEATURE (20) NULL feature name passed to function
AT_ERR_NULL_READABLE_VAR (23) Readable not set
AT_ERR_NULL_WRITABLE_VAR (25) Writable not set
AT_ERR_NULL_ISAVAILABLE_VAR (31) Available not set
AT_ERR_NULL_VALUE (28) NULL value returned from function
AT_ERR_NULL_STRING (29) NULL string returned from function
AT_ERR_NULL_MAXSTRINGLENGTH (32) Max string length is NULL
AT_ERR_INVALIDHANDLE (12) Invalid device handle passed to function
AT_ERR_NOMEMORY (37) No memory has been allocated for the current action
AT_ERR_COMM (17) An error has occurred while communicating with hardware

Integer Feature Description
AT_SUCCESS (0) Function call has been successful
AT_ERR_OUTOFRANGE (6) Value is outside the maximum and minimum limits
AT_ERR_NOTIMPLEMENTED (2) Feature has not been implemented for the chosen camera
AT_ERR_READONLY (3) Feature is read only
AT_ERR_NOTWRITABLE (5) Feature is currently not writable
AT_ERR_NOTREADABLE (4) Feature is currently not readable
AT_ERR_NULL_FEATURE (20) NULL feature name passed to function
AT_ERR_NULL_READABLE_VAR (23) Readable not set
AT_ERR_NULL_WRITABLE_VAR (25) Writable not set
AT_ERR_NULL_ISAVAILABLE_VAR (31) Available not set
AT_ERR_NULL_VALUE (28) NULL value returned from function
AT_ERR_NULL_MINVALUE (26) NULL min value
AT_ERR_NULL_MAXVALUE (27) NULL max value
AT_ERR_INVALIDHANDLE (12) Invalid device handle passed to function
AT_ERR_NOMEMORY (37) No memory has been allocated for the current action
AT_ERR_COMM (17) An error has occurred while communicating with hardware

Page 35

 V2.6 June 2016 andor.com

SDK 3

Float Feature Description
AT_SUCCESS (0) Function call has been successful
AT_ERR_OUTOFRANGE (6) Value is outside the maximum and minimum limits
AT_ERR_NOTIMPLEMENTED (2) Feature has not been implemented for the chosen camera
AT_ERR_READONLY (3) Feature is read only
AT_ERR_NOTWRITABLE (5) Feature is currently not writable
AT_ERR_NOTREADABLE (4) Feature is currently not readable
AT_ERR_NULL_FEATURE (20) NULL feature name passed to function
AT_ERR_NULL_READABLE_VAR (23) Readable not set
AT_ERR_NULL_WRITABLE_VAR (25) Writable not set
AT_ERR_NULL_ISAVAILABLE_VAR (31) Available not set
AT_ERR_NULL_VALUE (28) NULL value returned from function
AT_ERR_NULL_MINVALUE (26) NULL min value
AT_ERR_NULL_MAXVALUE (27) NULL max value
AT_ERR_INVALIDHANDLE (12) Invalid device handle passed to function
AT_ERR_NOMEMORY (37) No memory has been allocated for the current action
AT_ERR_COMM (17) An error has occurred while communicating with hardware

Boolean Feature Description
AT_SUCCESS (0) Function call has been successful
AT_ERR_OUTOFRANGE (6) The value passed to the function was not a valid boolean value i.e. 0

or 1.
AT_ERR_NOTIMPLEMENTED (2) Feature has not been implemented for the chosen camera
AT_ERR_READONLY (3) Feature is read only
AT_ERR_NOTWRITABLE (5) Feature is currently not writable
AT_ERR_NOTREADABLE (4) Feature is currently not readable
AT_ERR_NULL_FEATURE (20) NULL feature name passed to function
AT_ERR_NULL_READABLE_VAR (23) Readable not set
AT_ERR_NULL_WRITABLE_VAR (25) Writable not set
AT_ERR_NULL_ISAVAILABLE_VAR (31) Available not set
AT_ERR_NULL_VALUE (28) NULL value returned from function
AT_ERR_INVALIDHANDLE (12) Invalid device handle passed to function
AT_ERR_NOMEMORY (37) No memory has been allocated for the current action
AT_ERR_COMM (17) An error has occurred while communicating with hardware

Enumerated Feature Description
AT_SUCCESS (0) Function call has been successful
AT_ERR_OUTOFRANGE (6) The index passed to the function was either less than zero or greater

than or equal to the number of implemented options.
AT_ERR_NOTIMPLEMENTED (2) Feature has not been implemented for the chosen camera
AT_ERR_READONLY (3) Feature is read only
AT_ERR_NOTWRITABLE (5) Feature is currently not writable
AT_ERR_NOTREADABLE (4) Feature is currently not readable
AT_ERR_INDEXNOTAVAILABLE (7) Index is currently not available
AT_ERR_INDEXNOTIMPLEMENTED (8) Index is not implemented for the chosen camera
AT_ERR_STRINGNOTAVAILABLE(18) Index / String is not available
AT_ERR_STRINGNOTIMPLEMENTED (19) Index / String is not implemented for the chosen camera
AT_ERR_NULL_FEATURE (20) NULL feature name passed to function
AT_ERR_NULL_READABLE_VAR (23) Readable not set
AT_ERR_NULL_WRITABLE_VAR (25) Writable not set
AT_ERR_NULL_ISAVAILABLE_VAR (31) Available not set
AT_ERR_NULL_VALUE (28) NULL value returned from function
AT_ERR_NULL_COUNT_VAR (30) NULL feature count
AT_ERR_NULL_IMPLEMENTED_VAR (22) Feature not implemented
AT_ERR_INVALIDHANDLE (12) Invalid device handle passed to function
AT_ERR_NOMEMORY (37) No memory has been allocated for the current action
AT_ERR_COMM (17) An error has occurred while communicating with hardware

Page 36

 V2.6 June 2016 andor.com

SDK 3

Command Feature Description
AT_SUCCESS (0) Function call has been successful
AT_ERR_NOTIMPLEMENTED (2) Feature has not been implemented for the chosen camera
AT_ERR_NOTWRITABLE (5) Feature is currently not executable
AT_ERR_NULL_FEATURE (20) NULL feature name passed to function
AT_ERR_NULL_READABLE_VAR (23) Readable not set
AT_ERR_NULL_WRITABLE_VAR (25) Writable not set
AT_ERR_NULL_ISAVAILABLE_VAR (31) Available not set
AT_ERR_NULL_VALUE (28) NULL value returned from function
AT_ERR_INVALIDHANDLE (12) Invalid device handle passed to function
AT_ERR_NOMEMORY (37) No memory has been allocated for the current action
AT_ERR_COMM (17) An error has occurred while communicating with hardware

Buffer Control Description
AT_SUCCESS (0) Function call has been successful
AT_ERR_TIMEDOUT (13) The AT_WaitBuffer function timed out while waiting for data arrive in

output queue
AT_ERR_BUFFERFULL (14) The input queue has reached its capacity
AT_ERR_INVALIDSIZE (15) The size of a queued buffer did not match the frame size
AT_ERR_INVALIDALIGNMENT (16) A queued buffer was not aligned on an 8-byte boundary
AT_ERR_HARDWARE_

OVERFLOW (100)
The software was not able to retrieve data from the card or camera
fast enough to avoid the internal hardware buffer bursting.

AT_ERR_NOMEMORY (37) No memory has been allocated for the current action
AT_ERR_NODATA (11) No Internal Event or Internal Error
AT_ERR_COMM (17) An error has occurred while communicating with hardware
AT_ERR_NULL_QUEUE_PTR (34) Pointer to queue is NULL
AT_ERR_NULL_WAIT_PTR (35) Wait pointer is NULL
AT_ERR_NULL_PTRSIZE (36) Pointer size is NULL

Feature Callback Description
AT_SUCCESS (0) Function call has been successful
AT_ERR_NULL_FEATURE (20) NULL feature name passed to function
AT_ERR_NULL_EVCALLBACK (33) EvCallBack parameter is NULL
AT_ERR_NOTIMPLEMENTED (2) Feature has not been implemented for the chosen camera
AT_ERR_INVALIDHANDLE (12) The size of a queued buffer did not match the frame size

Page 37

 V2.6 June 2016 andor.com

SDK 3

SECTION 4 FEATURES

4.1 CAMERA SUPPORT

SDK3 currently supports only the Andor Neo and Zyla cameras, and the Apogee family of cameras. The features that
are available for these cameras are outlined below. There is also a software module called SimCam that simulates the
functionality of a camera. The SimCam module can be useful to prototype an application where availability of a real
camera may be limited. To use SimCam, you should copy the atdevsimcam.dll file into your application directory. On
initialisation of the SDK there will be two SimCam cameras available. The features available under SimCam are also
outlined below.

4.2 FEATURE REFERENCE

Feature Type Description Availability
AccumulateCount Integer Sets the number of images that should be summed to

obtain each image in sequence.
Neo
Zyla
iStar-sCMOS

AcquiredCount Integer Dynamically incrementing count during an image
sequence.

Apogee

AcquisitionStart Command Starts an acquisition. SimCam, Neo
Zyla, iStar-
sCMOS

AcquisitionStop Command Stops an acquisition. SimCam, Neo
Zyla, iStar-
sCMOS

AlternatingReadoutDirection Boolean Configures whether the sensor will be read out in
alternating directions. See SensorReadDirection.

Zyla

AOIBinning Enumerated Sets up pixel binning on the camera.
Options:

 1x1

 2x2

 3x3

 4x4

 8x8

See Section 4.6 Area of Interest.

Neo
Zyla
iStar-sCMOS

AOIHBin Integer Configures the Horizontal Binning of the sensor area of
interest.

See Section 4.6 Area of Interest.

SimCam
Apogee, Zyla,
iStar-sCMOS

AOIHeight Integer Configures the Height of the sensor area of interest in
super-pixels.

See Section 4.6 Area of Interest.

SimCam, Neo
Zyla, Apogee,
iStar-sCMOS

AOILayout Enumerated Options:

 Image

 Kinetics

 TDI

 Multitrack

Apogee, Zyla,
iStar-sCMOS

AOILeft Integer Configures the left hand coordinate of the sensor area of
interest in sensor pixels.

See Section 4.6 Area of Interest.

SimCam, Neo
Zyla, Apogee,
iStar-sCMOS

AOIStride Integer The size of one row in the image in bytes. Extra padding
bytes may be added to the end of each line after pixel
data to comply with line size granularity restrictions
imposed by the underlying hardware interface.

See Section 4.3 Image Format.

Neo
Zyla,
iStar-sCMOS

AOITop Integer Configures the top coordinate of the sensor area of
interest in sensor pixels.

See Section 4.6 Area of Interest.

SimCam, Neo
Zyla, Apogee,
iStar-sCMOS

AOIVBin Integer Configures the Vertical Binning of the sensor area of
interest.

See Section 4.6 Area of Interest.

SimCam
Apogee, Zyla,
iStar-sCMOS

AOIWidth Integer Configures the Width of the sensor area of interest in
super-pixels.

SimCam, Neo
Zyla, Apogee,

Page 38

 V2.6 June 2016 andor.com

SDK 3

Feature Type Description Availability

See Section 4.6 Area of Interest. iStar-sCMOS

AuxiliaryOutSource Enumerated Configures which signal appears on the auxiliary output
pin.

Options:

 FireRow1

 FireRowN

 FireAll

 FireAny

Neo
Zyla

AuxOutSourceTwo Enumerated AuxOutSourceTwo is a configurable output available to
the user on the D-type (Zyla) and SMA (iStar-sCMOS).

Options:

 ExternalShutterControl

 FrameClock

 RowClock

 ExposedRowClock

Zyla, iStar-
sCMOS

BackoffTemperatureOffset Float The Backoff temperature offset of the cooler subsystem. Apogee

Baseline Integer Returns the baseline level of the image with current
settings

Neo
Zyla
iStar-sCMOS

BitDepth Enumerated Returns the number bits used to store information about
each pixel of the image. . Supported Bit Depth will be
dependent on the camera.
Options Neo/Zyla:

 11 Bit or 12 Bit
16 Bit

Options Apogee:

 12 Bit (Not available AltaF/Aspen/Ascent)

 16 Bit

For AltaU/E this is determined by PixelReadoutRate:

 "Normal" -> "16-bit"

 "Fast" -> "12-bit"

Neo
Zyla, Apogee,
iStar-sCMOS

BufferOverflowEvent Integer When enabled this will notify the user that the image
buffer on the camera has been exceeded, causing the
current acquisition to stop.

Neo
Zyla
iStar-sCMOS

BytesPerPixel Floating
Point

Returns the calculated bytes per pixel. This is read only. Neo
Zyla
iStar-sCMOS

CameraAcquiring Boolean Returns whether or not an acquisition is currently
acquiring.

SimCam, Neo
Zyla, iStar-
sCMOS

CameraDump Command Dumps current hardware configuration information to file
in the executable directory. File is called camdump-[Serial
Number]

Neo
Zyla
iStar-sCMOS

CameraFamily String Returns the family of the camera. Apogee

CameraMemory Integer Returns the amount of available memory for storing
images, in bytes.

Apogee

CameraModel String Returns the camera model. SimCam, Neo
Zyla, iStar-
sCMOS

CameraName String Returns the name of the camera. Neo, Zyla,
Apogee, iStar-
sCMOS

CameraPresent Boolean Returns whether the camera is connected to the system.
Register a callback to this feature to be notified if the
camera is disconnected. Notification of disconnection will
not occur if CameraAcquiring is true, in this case
AT_WaitBuffer will return an error.

ColourFilter Enumerated Controls which colour filter is enabled.

Apogee

Page 39

 V2.6 June 2016 andor.com

SDK 3

Feature Type Description Availability
Options:

 None

 Bayer

 TRUESENSE

ControllerID String Returns a unique identifier for the camera controller
device. i.e. Frame grabber over Cameralink

Neo (CL)
Zyla (CL)

CoolerPower Double Percentage of maximum power being used by the cooler. Apogee

CycleMode Enumerated Configures whether the camera will acquire a fixed length
sequence or a continuous sequence. In Fixed mode the
camera will acquire ‘FrameCount’ number of images and
then stop automatically. In Continuous mode the camera
will continue to acquire images indefinitely until the
‘AcquisitionStop’ command is issued.

Options:

 Fixed

 Continuous

SimCam, Neo
Zyla, iStar-
sCMOS

DDGInsertionDelay Enumerated Configures the length of the insertion delay.

Options:

 Normal

 Fast

iStar-sCMOS

DDGIOCEnable Boolean Enable or disable the integrate on chip option. iStar-sCMOS

DDGIOCNumberOfPulses Integer Configures the number of pulses generated when the
integrate on chip option is enabled.

iStar-sCMOS

DDGIOCPeriod Integer Configures the period of the pulses generated when the
integrate on chip option is enabled.

iStar-sCMOS

DDGOutputDelay Integer Configures the delay (in picoseconds) for the currently
selected DDG output.

iStar-sCMOS

DDGOutputEnable Boolean Enable or disable the currently selected DDG output. iStar-sCMOS

DDGOutputStepEnable Boolean Enable or disable DDG step mode for the currently
selected DDG output.

iStar-sCMOS

DDGOpticalWidthEnable Boolean Enable or disable the optical gate width option. iStar-sCMOS

DDGOutputPolarity Enumerated Configures the polarity for the currently selected DDG
output.

Options:

 Negative

 Positive

iStar-sCMOS

DDGOutputSelector Enumerated Selects the DDG output that you subsequently wish to
configure using the DDG output Features.

Options:

 Gater

 Output A

 Output B

 Output C

iStar-sCMOS

DDGOutputWidth Integer Configures the width (in picoseconds) for the currently
selected DDG output.

iStar-sCMOS

DDGStepCount Integer Configures the number of frames that will use the same
step value.

iStar-sCMOS

DDGStepDelayCoefficientA Floating
Point

Configures coefficient A for the delay DDG step. iStar-sCMOS

DDGStepDelayCoefficientB Floating
Point

Configures coefficient B for the delay DDG step. iStar-sCMOS

DDGStepDelayMode Enumerated Configures the delay DDG step mode.

Options:

 Off

 Linear

 Exponential

 Logarithmic

iStar-sCMOS

Page 40

 V2.6 June 2016 andor.com

SDK 3

Feature Type Description Availability
DDGStepEnabled Boolean Indicates when DDG step is enabled. iStar-sCMOS

DDGStepUploadProgress Integer Indicates the current progess of the DDG step upload. iStar-sCMOS

DDGStepUploadRequired Boolean Indicates if a DDG step upload is required. iStar-sCMOS

DDGStepWidthCoefficientA Floating
Point

Configures coefficient A for the width DDG step. iStar-sCMOS

DDGStepWidthCoefficientB Floating
Point

Configures coefficient B for the width DDG step. iStar-sCMOS

DDGStepWidthMode Enumerated Configures the width DDG step mode.

Options:

 Off

 Linear

 Exponential

 Logarithmic

iStar-sCMOS

DDGQueue Command Instructs the DDG to start using the current DDG
configuration after the current delay sequence has
completed.

iStar-sCMOS

DDGStepUploadModeValues Command Uploads the DDG step values to the DDG frame buffer. iStar-sCMOS

DDR2Type String Returns the amount of DDR2 Memory installed. Apogee

DeviceCount Integer Returns the number of cameras detected. System

DeviceVideoIndex Integer Returns the /dev/videoN number in Linux only Neo (CL)
Zyla (CL)

DisableShutter Boolean Enable or Disable shutter during acquisition. Overridden
by ForceShutterOpen.

Apogee

DriverVersion String Returns USB driver version if USB Interface.
Returns cURL library version if Ethernet interface.

Apogee

ElectronicShutteringMode Enumerated Configures which on-sensor electronic shuttering mode is
used.

 For pulsed or fast moving images Global shuttering is
recommended.

 For the highest frame rates and best noise
performance Rolling is recommended.

Options:

 Rolling (not available in iStar-sCMOS)

 Global

SimCam, Neo
Zyla, iStar-
sCMOS

EventEnable Boolean Enable or Disable the acquisition event selected via the
EventSelector feature.

Neo
Zyla
iStar-sCMOS

EventsMissedEvent Integer When enabled this will notify the user that an acquisition
event, which the user registered a callback for, has been
missed.

Neo
Zyla
iStar-sCMOS

EventSelector Enumerated Selects the acquisition events you wish to enable or
disable using the EventEnable feature.

Options:

 ExposureEndEvent

 ExposureStartEvent

 RowNExposureEndEvent (not available in iStar-

sCMOS)

 RowNExposureStartEvent (not available in iStar-

sCMOS)

 EventsMissedEvent

 BufferOverflowEvent

Neo
Zyla
iStar-sCMOS

ExposedPixelHeight Integer Configures the exposure window in pixels. Zyla
iStar-sCMOS

ExposureTime Floating
Point

The requested exposure time in seconds. Note: In some
modes the exposure time can also be modified while the
acquisition is running.

SimCam, Neo
Zyla, iStar-
sCMOS

ExposureEndEvent Integer When enabled this will notify the user on the Negative
edge of the FIRE in Global Shutter and FIRE of Row 1 in
Rolling Shutter.

Neo
Zyla
iStar-sCMOS

ExposureStartEvent Integer When enabled this will notify the user on the Positive Neo

Page 41

 V2.6 June 2016 andor.com

SDK 3

Feature Type Description Availability
edge of the FIRE in Global Shutter and FIRE of Row 1 in
Rolling Shutter.

Zyla
iStar-sCMOS

ExternalIOReadout Boolean When TRUE, the readout of the camera is no longer
started by the external shutter. Instead, Pin 5 "External
Readout Start" is used to start the readout. The default
value of this variable after initialization is FALSE.

Not available on Ascent.

Must use IOControl to cause the camera toconsider Pin 5
to be "External Readout Start" and not user-defined.

Apogee

ExternalTriggerDelay Floating
Point

Sets the delay time between the camera receiving an
external trigger and the acquisition start.

Zyla
iStar-sCMOS

FanSpeed Enumerated Configures the speed of the fan in the camera.

Options SimCam/Neo/Zyla/iStar-sCMOS:

 Off

 Low (Neo &SimCam Only)

 On

Options Apogee:

 Off

 Low

 Medium

 High

SimCam, Neo
Zyla, Apogee,
iStar-sCMOS

FastAOIFrameRateEnable Boolean Enables faster framerates at small AOIs. Zyla, Neo,
iStar-sCMOS

FirmwareVersion String Returns the camera firmware version Neo
Zyla
Apogee
iStar-sCMOS

ForceShutterOpen Boolean Choose whether to force the shutter to open. Overrides
DisableShutter.

Apogee

FrameCount Integer Configures the number of images to acquire in the
sequence. The value of FrameCount must be any value
which is a multiple of AccumulateCount. This ensures the
accumulation contains the correct number of frames.
When this feature is unavailable then the camera does
not currently support fixed length series, therefore you
must explicitly abort the acquisition once you have
acquired the amount of frames required.

SimCam
Neo
Zyla,
Apogee, iStar-
sCMOS

FrameInterval Floating
Point

The interval in seconds between the end of readout of
one image to the beginning of exposure of the next.

Apogee

FrameIntervalTiming Boolean Configures whether the timing of image acquisition is
determined by FrameInterval or FrameRate

Apogee

FrameRate Floating
Point

Configures the frame rate in Hz at which each image is
acquired during any acquisition sequence. This is the rate
at which frames are acquired by the camera which may
be different from the rate at which frames are delivered to
the user. For example when AccumulateCount has a
value other than 1, the apparent frame rate will decrease
proportionally.

SimCam, Neo
Zyla, Apogee,
iStar-sCMOS

FullAOIControl Boolean Indicates whether or not the camera supports arbitrary
AOI selection. If this feature is false then the supported

AOI’s are limited to those listed in Section 4.6 Area of
Interest.

Neo
Zyla
iStar-sCMOS

GateMode Enumerated Selects the photocathode gating mode.

Options:

 CWOn

 CWOff

 FireOnly

 GateOnly

iStar-sCMOS

Page 42

 V2.6 June 2016 andor.com

SDK 3

Feature Type Description Availability
 FireAndGate

 DDG

HeatSinkTemperature Float Returns the current Heatsink Temperature.

Not available for Ascent.

Apogee

ImageSizeBytes Integer Returns the buffer size in bytes required to store the data
for one frame. This will be affected by the Area of Interest
size, binning and whether metadata is appended to the
data stream.

SimCam, Neo
Zyla, iStar-
sCMOS

InputVoltage Float Returns the operating input voltage to the camera. Apogee

InterfaceType String Returns the camera interface type. Current types:

Options Neo/Zyla:

 USB3

 CL 3 Tap

 CL 2x5 Tap

 CL 10 Tap

Options iStar-sCMOS:

 USB3

Options Apogee:

 USB2

 Ethernet

Neo
Zyla
Apogee
iStar-sCMOS

IOControl Enum Configures whether selected IO is default or user defined.

Options

 Default

 User

Apogee

IODirection Boolean or
Enumerated

Configures whether selected IO is input or output. Cannot
be changed for AltaF or Ascent.

Options

 Input / 0

 Output / 1

Apogee

IOState Boolean Configures whether selected IO is enabled or disabled. Apogee

IOInvert Boolean Indicates whether or not the operation of the IO Pin
selected through the IO Selector Feature is inverted.

Neo
Zyla
iStar-sCMOS

IOSelector Enumerated Selects the IO Pin that you subsequently wish to
configure using the IO Invert Feature.

Options Neo/Zyla:

 Fire 1

 Fire N (Zyla Only)

 Aux Out 1

 Arm

 External Trigger

 Fire N and 1 (deprecated)

Options iStar-sCMOS:

 Aux Out 2

 External Trigger

Options Apogee:

 External Trigger (I/O Signal 1: TriggerNormal)

 Fire (I/O Signal 2: Shutter Output)

 Shutter Strobe (I/O Signal 3: Shutter Strobe)

 External Exposure (I/O Signal 4 ExternalShutter)

 External Readout (I/0 Signal 5: ExternalIOReadout)

Neo
Zyla
Apogee
iStar-sCMOS

Page 43

 V2.6 June 2016 andor.com

SDK 3

Feature Type Description Availability
IRPreFlashEnable Boolean When TRUE, the camera normalizes the sensor before

an image is taken with a flash of IR.

Not available for Ascent or other Interline transfer CCDs.

Apogee

KeepCleanEnable Boolean Enableds/Disables any flushing command sent by the
driver.

Apogee

KeepCleanPostExposure
Enable

Boolean Enables/Disables the camera control firmware to/from
immediately beginning an internal flush cycle after an
exposure.

Apogee

LineScanSpeed Floating
Point

Configures the number of rows read per second. Zyla

LUTIndex Integer Sets the position in the LUT to read/write a new pixel map

LUTValue Integer Sets the value in LUT in position specified by “LUT Index”

MaxInterfaceTransferRate Float Returns the maximum sustainable transfer rate of the
interface for the current shutter mode and AOI.

Neo
Zyla
iStar-sCMOS

MCPGain Integer Controls the voltage applied across the microchannel
plate.

iStar-sCMOS

MCPIntelligate Boolean Enables or disables the MCP Intelligate mode. Only
available when normal insertion delay is selected.

iStar-sCMOS

MCPVoltage Integer Indicates the current MCP voltage. iStar-sCMOS

MetadataEnable Boolean Enable metadata.
This is a global flag which will enable inclusion of

metadata in the data stream as described in Section 4.5
Metadata. When this flag is enabled the data stream will

always contain the MetadataFrame information.
This will override the subsequent metadata settings when
disabled.
For example: If this feature is disabled and
MetadataTimestamp is enabled, then metadata will not
be included in the data stream.
For example: If this feature is enabled and
MetadataTimestamp is disabled, then metadata will be
included in the data stream, but without timestamp
information.

Neo
Zyla
iStar-sCMOS

MetadataFrame

Boolean Indicates whether the MetadataFrame information is
included in the data stream. This is read only and is
automatically sent if metadata is enabled.

Neo
Zyla
iStar-sCMOS

MetadataTimestamp Boolean Enables inclusion of timestamp information in the
metadata stream. The timestamp indicates the time at
which the exposure for the frame started.

Neo
Zyla
iStar-sCMOS

MicrocodeVersion String Returns a revision code for the internal USB firmware
within the camera head.
Only available on USB interface.

Apogee

MultitrackBinned Boolean Configures whether the currently selected multitrack will
be binned or not. Default state is set to true.

Zyla
iStar-sCMOS

MultitrackCount Integer It is in the range 1-256. When set to 0, multitrack is
disabled.

Zyla
iStar-sCMOS

MultitrackEnd Integer Configures the row at which the currently selected
multitrack ends.

Zyla
iStar-sCMOS

MultitrackSelector Integer Selects multitrack index. It is in the range 0-255. Zyla
iStar-sCMOS

MultitrackStart Integer Configures the row at which the currently selected
multitrack begins.

Zyla
iStar-sCMOS

Overlap Boolean Enables overlap readout mode. Neo
Zyla
Apogee
iStar-sCMOS

PixelCorrection Enumerated Configures the pixel correction to be applied.

Options:

 Raw

SimCam

PixelEncoding Enumerated Configures the format of data stream. See Section SimCam, Neo

Page 44

 V2.6 June 2016 andor.com

SDK 3

Feature Type Description Availability

4.4 Pixel Encoding.

Neo, Zyla, iStar-sCMOS and SimCam Options:
Mono12
Mono12Packed
Mono16
Mono32

SimCam only Options:
Mono8
RGB8Packed
Mono12Coded
Mono12CodedPacked
Mono22Parallel
Mono22PackedParallel

See Section 4.7 PixelEncoding and PreAmpGainControl

for the dependency between this feature and the
PreAmpGainControl feature.

Zyla, iStar-
sCMOS

PixelHeight Floating
Point

Returns the height of each pixel in micrometers. SimCam, Neo,
Zyla, Apogee,
iStar-sCMOS

PixelReadoutRate Enumerated Configures the rate of pixel readout from the sensor.

Options sCMOS:

 280 MHz

 200 MHz (Neo Only - deprecated)

 100 MHz

Options SimCam:

 550 MHz

Options Apogee:

 Normal

 Fast (Not Available on AltaE)

SimCam, Neo
Zyla, Apogee,
iStar-sCMOS

PixelWidth Floating
Point

Returns the width of each pixel in micrometers. SimCam, Neo,
Zyla, Apogee,
iStar-sCMOS

PortSelector Integer Configures the port being used.
Not implemented if fixed Single readout.
Min is always 0.
Max is {0, 1, 3} depending on {Single, Dual, Quad}
readout.

If the camera is switchable between Single and Dual
readout then the value of PortSelector required to set the
gain/offset for Single readout is camera-dependent (i.e. it
could be 0 or 1).

Apogee

PreAmpGain Enumerated Configures the gain applied to the gain channel selected
through the Pre Amp Gain Selector Feature.

Options:

 x1

 x2

 x10

 x30

SimCam, Neo
(deprecated)

PreAmpGainChannel Enumerated Configures which pre amp gain channel(s) will be used
for reading out the sensor.

Options:

 High

 Low

 Both

SimCam, Neo
(deprecated)

PreAmpGainControl Enumerated Wrapper Feature to simplify access to the PreAmpGain, Neo

Page 45

 V2.6 June 2016 andor.com

SDK 3

Feature Type Description Availability
PreAmpGainChannel and PreAmpGainSelector feaures.
See Section 4.7 PixelEncoding and PreAmpGainControl

for the dependency between this feature and the
PixelEncoding feature. This feature is deprecated and
should be replaced by the SimplePreAmpGainControl
feature as some of the options may not be supported.

Options:

 Gain 1 (11 bit)

 Gain 2 (11 bit)

 Gain 3 (11 bit)

 Gain 4 (11 bit)

 Gain 1 Gain 3 (16 bit)

 Gain 1 Gain 4 (16 bit)

 Gain 2 Gain 3 (16 bit)

 Gain 2 Gain 4 (16 bit)

(deprecated)

PreAmpGainValue Integer This is the value of the pre-amplifier gain, for the
currently-selected ADC/channel pair as selected by
PortSelector if PortSelector is implemented.

Only effective for Fast PixelReadoutRate for
AltaU/AltaE/AltaF/Aspen.

Apogee

PreAmpGainSelector Enumerated Selects the gain channel that you subsequently wish to
configure using the Pre Amp Gain Feature.

Options:

 High

 Low

SimCam, Neo
(deprecated)

PreAmpOffsetValue Integer This is the value of the pre-amplifier offset, for the
currently-selected ADC/channel pair as selected by
PortSelector, if PortSelector is implemented.

Only effective for Fast PixelReadoutRate for
AltaU/AltaE/AltaF/Aspen.

Apogee

PreTriggerEnabled Boolean Enable or disable the pre-trigger input. iStar-sCMOS

ReadoutTime Floating
Point

This feature will return the time to readout data from a
sensor.

Neo
Zyla
iStar-sCMOS

RollingShutterGlobalClear Boolean Enables Rolling Shutter Global Clear readout mode. Zyla

RowNExposureEndEvent Integer When enabled this will notify the user on the Negative
edge of the FIRE of ROW N in Rolling Shutter.

Neo
Zyla

RowNExposureStartEvent Integer When enabled this will notify the user on the Positive
edge of the FIRE of ROW N in Rolling Shutter.

Neo
Zyla

RowReadTime Floating
Point

Configures the time in seconds to read a single row. Zyla

ScanSpeedControlEnable Boolean Configures whether the LineReadSpeed and
RowReadTime can be altered.

Zyla

SensorCooling Boolean Configures the state of the sensor cooling. Cooling is
disabled by default at power up and must be enabled for
the camera to achieve its target temperature. The actual
target temperature can be set with the
TemperatureControl feature where available for example
on the Neo camera.

SimCam, Neo
Zyla, Apogee,
iStar-sCMOS

SensorHeight Integer Returns the height of the sensor in pixels. SimCam, Neo
Zyla, Apogee,
iStar-sCMOS

SensorModel String Returns the sensor model installed in the camera. Apogee

SensorReadoutMode Enumerated Configures the direction in which the sensor will be read
out.

Options

 Bottom Up Sequential

 Bottom Up Simultaneous

Zyla

Page 46

 V2.6 June 2016 andor.com

SDK 3

Feature Type Description Availability
 Centre Out Simultaneous

 Outside In Simultaneous

 Top Down Sequential

 Top Down Simultaneous

SensorType Enumerated Returns true for CCD, False for CMOS.

Options:

 CCD

 CMOS

Apogee

SensorTemperature Floating
Point

Read the current temperature of the sensor. SimCam, Neo
Zyla, Apogee,
iStar-sCMOS

SensorWidth Integer Returns the width of the sensor in pixels. SimCam, Neo
Zyla, Apogee,
iStar-sCMOS

SerialNumber String Returns the camera serial number. SimCam, Neo
Zyla, iStar-
sCMOS

ShutterAmpControl Boolean Disables the CCD voltage while the shutter strobe is high. Apogee

ShutterMode Enumerated Controls the behavior of the shutter.

Options:

 Open

 Closed

 Auto

Apogee

ShutterOutputMode Enumerated Controls the mode the external trigger will run in. External
Shutter signal can either be set to high (open) or low
(closed). ShutterOutput can be triggered by setting
AuxOutSourceTwo to ExternalShutterControl.

Options:

 Open

 Closed

Zyla
iStar-sCMOS

ShutterState Boolean Returns whether shutter is opened or closed. Apogee

ShutterStrobePeriod Double Sets the period of the shutter strobe on pin3.

Must use IOControl to cause the camera to consider Pin
3 to be "Shutter Strobe Output" and not user-defined.

Apogee

ShutterStrobePosition Double Sets the delay from the time the exposure begins to the
time the rising edge of the shutter strobe period appears
on pin 3.

Must use IOControl to cause the camera to consider Pin
3 to be "Shutter Strobe Output" and not user-defined.

Apogee

ShutterTransferTime Floating
Point

Sets the time at which the shutter will be opened before
an exposure starts. Can be set between 0 and 100ms at
0.5ms steps.Only available whenever the
ExternalTriggerMode is set to ‘Automatic’

Zyla
iStar-sCMOS

SimplePreAmpGainControl Enumerated Wrapper Feature to simplify selection of the sensitivity
and dynamic range options. This feature should be used
as a replacement for the PreAmpGainControl feature as
some of the options in the PreAmpGainControl feature
are not supported on all cameras. Supported Bit Depth
will be dependent on the camera. See Section 4.7
PixelEncoding and PreAmpGainControl for the
dependency between this feature and the PixelEncoding
feature.

Options:

 11-bit (high well capacity)
 Or
12-bit (high well capacity)

Neo
Zyla
iStar-sCMOS

Page 47

 V2.6 June 2016 andor.com

SDK 3

Feature Type Description Availability
 11-bit (low noise)

 Or
12-bit (low noise)

 16-bit (low noise & high well capacity)

SoftwareTrigger Command Generates a software trigger in the camera. Used to
generate each frame on the camera whenever the trigger
mode is set to Software.

Neo
Zyla
iStar-sCMOS

SoftwareVersion String Returns the version of the SDK. System

SpuriousNoiseFilter Boolean Enables or Disables the Spurious Noise Filter Neo
Zyla
iStar-sCMOS

StaticBlemishCorrection Boolean Enables or Disables Static Blemish Correction Neo
Zyla
iStar-sCMOS

Synchronous
Triggering

Boolean Configures whether external triggers are synchronous
with the read out of a sensor row. Asynchronous
triggering may result in data corruption in the row being
digitised when the triggers occurs.

SimCam

TargetSensor
Temperature

Floating
Point

Configures the temperature to which the sensor will be
cooled. To be used for cameras with no correction data (-
50->25). Otherwise TemperatureControl should be used.

SimCam, Neo
(deprecated)

Temperature
Control

Enumerated Allows the user to set the target temperature of the
sensor based on a list of valid temperatures.

Neo

Temperature
Status

Enumerated Reports the current state of cooling towards the Target
Sensor Temperature. [Read Only]

Options Neo/Zyla/Apogee/iStar-sCMOS:

 Cooler Off

 Stabilised

 Cooling

Neo/Zyla/iStar-sCMOS Only:

 Drift

 Not Stabilised

 Fault

Apogee Only:

 Backoff

Neo
Zyla,
Apogee
iStar-sCMOS

TimestampClock Integer Reports the current value of the camera’s internal
timestamp clock. This same clock is used to timestamp
images as they are acquired when the
MetadataTimestamp feature is enabled. The clock is
reset to zero when the camera is powered on and then
runs continuously at the frequency indicated by the
TimestampClockFrequency feature. The clock is 64-bits
wide.

Neo
Zyla
iStar-sCMOS

TimestampClock
Frequency

Integer Reports the frequency of the camera’s internal timestamp
clock in Hz.

Neo
Zyla
iStar-sCMOS

TimestampClock
Reset

Command Resets the camera’s internal timestamp clock to zero. As
soon as the reset is complete the clock will begin
incrementing from zero at the rate given by the
TimestampClockFrequency feature.

Neo
Zyla
iStar-sCMOS

TransmitFrames Boolean If false all image data will be concatenated and obtained
as a single download at the end of the sequence.
If true each image (or image row in the case of TDI) from
a sequence will be available for download after it is read
out (digitised).

Apogee

TriggerMode Enumerated Allows the user to configure the camera trigger mode at a
high level. If the trigger mode is set to Advanced then the
Trigger Selector and Trigger Source feature must also be
set.

SimCam, Neo
Zyla, Apogee,
iStar-sCMOS

Page 48

 V2.6 June 2016 andor.com

SDK 3

Feature Type Description Availability
Neo, Zyla, iStar-sCMOS, SimCam and Apogee Options:

 Internal

 Software (Not available on Apogee)

 External

 External Start

 External Exposure

SimCam only Options:

 Advanced

UsbProductId Integer Returns the USB Product ID associated with the camera
system.

Only available for USB interface.

Apogee

UsbDeviceId Integer Returns the USB Device ID associated with the camera
system.

Only available on USB interface.

Apogee

VerticallyCentreAOI Boolean Vertically centres the AOI in the frame. With this enabled,
AOITop will be disabled.

Neo, Zyla,
iStar-sCMOS

Page 49

 V2.6 June 2016 andor.com

SDK 3

4.3 IMAGE FORMAT

Images are presented to the application in the general format shown in Figure 1. Pixels are returned row by row
starting from the top row and with the leftmost pixel being sent first in each row. The number of pixels in each row can
be obtained from the AOIWidth feature and the number of rows in the image can be obtained from the AOIHeight
feature.

Figure 1: General Image Format

Stride
At the end of each row there may be additional padding bytes. This padding area does not contain any valid pixel data
and should be skipped over when processing or displaying an image. This padding is necessary to ensure the image
can be transferred over the interface between the camera and the PC and its size is dependent on the specific
hardware interface being used as well as the current AOI settings. Figure 2 shows what this padding looks like when
viewing the raw data for an image in memory; in this example the pixels are 16-bit wide and the AOIWidth is 10.

Figure 2: Padding between image rows in memory

To ensure that your application will operate successfully with any hardware interface or AOI configuration, you should
make use of the AOIStride feature to skip over the padding at the end of each row. The AOIStride feature represents
the total number of bytes that each row of the image contains and includes the memory necessary for pixel data plus
any padding at the end of the row. The stride should be used during processing of an image to obtain the memory
address of each row relative to the previous row. See the example code below. Note that AOIStride is measured in
bytes whereas AOIWidth is measured in pixels.

//Get the next image from the SDK

AT_WaitBuffer(&ImageBuffer, &ImageSize, AT_INFINITE);

//Retrieve the dimensions of the image

AT_GetInt(Hndl, L"AOIStride", &Stride);

AT_GetInt(Hndl, L"AOIWidth", &Width);

Padding

Pixel 1,1

Pixel Pixel

Pixel Pixel

Pixel Pixel

Pixel Pixel

Pixel Pixel

Pixel Pixel

Pixel Pixel

Pixel Pixel

AOIHeight

AOIWidth

AOIStride

Page 50

 V2.6 June 2016 andor.com

SDK 3

AT_GetInt(Hndl, L"AOIHeight", &Height);

for (AT_64 Row=0; Row < Height; Row++) {

 //Cast the raw image buffer to a 16-bit array.

 //...Assumes the PixelEncoding is 16-bit.

 unsigned short* ImagePixels = reinterpret_cast<unsigned short*>(ImageBuffer);

 //Process each pixel in a row as normal

 for (AT_64 Pixel=0; Pixel < Width; Pixel++) {

 SomeProcessing(ImagePixels[Pixel]);

 }

 //Use Stride to get the memory location of the next row.

 ImageBuffer += Stride;

}

ATUtility Library
The ATUtility library provided with the SDK contains functionality that can be used to strip the padding from an
image. Once this is done the image can be processed without concern for padding. Stripping the padding from an
image will however incur some processing overhead. See example code below and Section 6.1 ATUTILITY.

//Get the next image from the SDK

AT_WaitBuffer(&ImageBuffer, &ImageSize, AT_INFINITE);

//Retrieve the dimensions of the image

AT_GetInt(Hndl, L"AOIStride", &Stride);

AT_GetInt(Hndl, L"AOIWidth", &Width);

AT_GetInt(Hndl, L"AOIHeight", &Height);

unsigned short ImagePixels[Width*Height];

//Use an atutility function to strip padding from the image

AT_ConvertBuffer(ImageBuffer, ImagePixels, Width, Height,

 Stride, L”Mono16”, L”Mono16”);

for (AT_64 Pixel=0; Pixel < Width*Height; Pixel++) {

 SomeProcessing(ImagePixels[Pixel]);

}

Page 51

 V2.6 June 2016 andor.com

SDK 3

4.4 PIXEL ENCODING

There are several Pixel Encoding options available for the pixels in an image. Each of the formats is described below
showing the pixel size, its layout in memory and sample C++ code for extracting pixel information out of the raw
memory array.

In the descriptions below MSB refers to the most significant bits of the pixel, LSB refers to the least significant bits.
ImageBuffer is the address of the start of the image in memory.

Mono12Packed
12-bit Monochrome Data, stored by packing two adjacent pixels into three bytes.

ImageBuffer+0 Pixel A (MSB)

ImageBuffer+1 Pixel B (LSB) Pixel A (LSB)

ImageBuffer+2 Pixel B (MSB)

ImageBuffer+3 Pixel C (MSB)

ImageBuffer+4 Pixel D (LSB) Pixel C (LSB)

ImageBuffer+5 Pixel D (MSB)

PixelA = (ImageBuffer [0] << 4) + (ImageBuffer [1] & 0xF);

PixelB = (ImageBuffer [2] << 4) + (ImageBuffer [1] >> 4);

PixelC = (ImageBuffer [3] << 4) + (ImageBuffer [4] & 0xF);

PixelD = (ImageBuffer [5] << 4) + (ImageBuffer [4] >> 4);

Note: The atutility library can be used to easily convert an image in this format to Mono16. i.e.

unsigned short* ImagePixels [Width*Height];

AT_ConvertBuffer(ImageBuffer, ImagePixels, Width, Height,

 Stride, L”Mono12Packed”, L”Mono16”);

See Section 6.1 ATUTILITY.

Mono12
12-bit Monochrome Data, stored as 16-bit little-endian with zero padded upper bits.

ImageBuffer+0 Pixel A (LSB)

ImageBuffer+1 0 Pixel A (MSB)

ImageBuffer+2 Pixel B (LSB)

ImageBuffer+3 0 Pixel B (MSB)

ImageBuffer+4 Pixel C (LSB)

ImageBuffer+5 0 Pixel C (MSB)

unsigned short* ImagePixels = reinterpret_cast<unsigned short*>(ImageBuffer);

PixelA = ImagePixels [0];

PixelB = ImagePixels [1];

PixelC = ImagePixels [2];

Bits 11:4
 (MSB)

Bits 3:0
(LSB)

Bits 11:8
 (MSB)

Bits 7:0
(LSB)

Page 52

 V2.6 June 2016 andor.com

SDK 3

Mono16

16-bit Monochrome Data, stored as 16-bit little-endian.

ImageBuffer+0 Pixel A (LSB)

ImageBuffer+1 Pixel A (MSB)

ImageBuffer+2 Pixel B (LSB)

ImageBuffer+3 Pixel B (MSB)

ImageBuffer+4 Pixel C (LSB)

ImageBuffer+5 Pixel C (MSB)

unsigned short* ImagePixels = reinterpret_cast<unsigned short*>(ImageBuffer);

PixelA = ImagePixels [0];

PixelB = ImagePixels [1];

PixelC = ImagePixels [2];

Mono32

32-bit Monochrome Data, stored as 32-bit little-endian.

ImageBuffer+0 Pixel A (LSB)

ImageBuffer+1 Pixel A

ImageBuffer+2 Pixel A

ImageBuffer+3 Pixel A (MSB)

ImageBuffer+4 Pixel B (LSB)

ImageBuffer+5 Pixel B

ImageBuffer+6 Pixel B

ImageBuffer+7 Pixel B (MSB)

unsigned int* ImagePixels = reinterpret_cast<unsigned int*>(ImageBuffer);

PixelA = ImagePixels [0];

PixelB = ImagePixels [1];

Mono8 (Limited Availability)

8-bit Monochrome Data

ImageBuffer+0 Pixel A

ImageBuffer+1 Pixel B

ImageBuffer+2 Pixel C

ImageBuffer+3 Pixel D

unsigned char* ImagePixels = reinterpret_cast<unsigned char*>(ImageBuffer);

PixelA = ImagePixels [0];

PixelB = ImagePixels [1];

PixelC = ImagePixels [2];

ImagePixels [3];

Bits 15:8
 (MSB)

Bits 7:0
(LSB)

Bits 31:24
 (MSB)

Bits 23:16 Bits 15:8 Bits 7:0
(LSB)

Bits 7:0

Page 53

 V2.6 June 2016 andor.com

SDK 3

4.5 METADATA

Metadata can be enabled through the MetadataEnable Boolean feature. When metadata is enabled extra information
will be appended onto each image by the camera. The ImageSizeBytes feature will update to include the extra
memory required for the metadata. By default metadata is disabled.

The features used to configure Metadata are:

 MetadataEnable – Enable inclusion of metadata information in the data stream.

 MetadataFrameInfo – Enable inclusion of frame information in the data stream.

 MetadataTimestamp – Enable inclusion of timestamp information in the data stream.

 MetadataFrame – Enable inclusion of image data in the data stream, this will always be included if metadata is

enabled.

With Metadata enabled the format of the image stream is shown below.

Figure 3: Format of the image stream with Metadata enabled.

Usage: Data, CID (Chunk ID), Length and then repeated as necessary.

Metadata is composed in blocks, with each block representing a particular type of metadata. Each block has an
independent identifier called the CID (Chunk Identifier). As well as the CID, each block contains the actual metadata
value and also a length field to facilitate parsing through the metadata blocks. The Length field in each block indicates
the size of the metadata information plus the size of the CID. Note that the Length field is the last field in each
metadata block. Parsing of metadata should be done in reverse, starting from the end of the data stream, and working
back through the metadata until you reach the start of the data stream.

The three types of metadata block currently supported are Frame (CID 0), Timestamp (CID 1) and Frame
Information (CID 7). The Frame metadata block simply contains the image data and is always enabled if metadata is
enabled. The Timestamp metadata block contains a timestamp indicating the time at which the exposure for the frame
was started. The Frame Information metadata block contains information on the structure of the image data.

All fields in the metadata blocks are stored little endian. i.e. least significant byte first.

The metadata format is described below:

Data
Data will vary depending on which CID it is. In this case it may be the actual image data or the timestamp information.

Chunk Identifier (CID)
A CID is used to label each block. Each CID is 4 bytes in length. The valid values for CID are shown below:

0 - Frame Data

 This represents the actual image.

Frame data 0
Frame length

(bytes)
Ticks 1

Tick length
(bytes)

Data Data CID CID Length Length

Frame Info 7
Frame info

length (bytes)

Data CID Length

Page 54

 V2.6 June 2016 andor.com

SDK 3

1 – FPGA “Ticks”

 From camera power up, a 64 bit counter will count number of FPGA clocks or “Ticks”.

 The Ticks data will always be a 64 bit number – 8 bytes

7 – Frame Info

 Information about the frame including AOI, pixel encoding and stride.

Length
The length is a 4 byte number. This is where the length in bytes of the metadata block is stored. It includes the size of
both the Data and the CID field.

Timestamp Frequency
The frequency of the timestamp clock can be retrieved through the TimestampClockFrequency feature.

Timestamp Clock
The current value of the timestamp clock can be read directly from the camera by accessing the TimestampClock
feature. This can be used to synchronise the timestamp attached to each image with an absolute calendar time. To do
this the program should first read the current time from the PC clock, then read the TimestampClock feature. This
reference point can then be used to find out the absolute time at which any image was acquired. Alternatively the
TimestampClockReset feature can be executed which will reset the timestamp clock to zero.

Frame Info
The frame info block takes the form:

Bits 63:48

(MSB)
Bits 47:32 Bits 31:24 Bits 23:16 Bits 15:0

(LSB)

AOI Height AOI Width 0 Pixel
Encoding

Stride

AOI Height, AOI Width and Stride are all 16 bit numbers. Pixel encoding takes the values:

 0 for Mono16

 1 for Mono12

 2 for Mono12Packed.

 3 for Mono32

Note

For the Frame Metadata block, Length is equal to the stride length x number of image rows, plus any padding at

the end of the image plus the size of the CID field.

See the Tutorial section 2.1.9 Metadata for example code showing how to configure and parse metadata.

Page 55

 V2.6 June 2016 andor.com

SDK 3

4.6 AREA OF INTEREST

The Area of Interest (AOI), sometimes referred to as Region of Interest (ROI) is configured with the following
features:

 AOIHBin, AOIVBin or AOIBinning

 AOIWidth

 AOILeft

 AOIHeight

 VerticallyCentreAOI

 AOITop

It is recommended that these features are configured in the order listed above as features towards the top of the list
will override the values below them if the values are incompatible.

Super-Pixels

A super-pixel is the result of combining multiple sensor pixels into a single data pixel by binning the values from each
sensor pixel together. The amount of binning in each direction is configured either by setting the AOIHBin and
AOIVBin features or by using the AOIBinning feature. The AOIWidth and AOIHeight features are set and retrieved in
units of super-pixels Therefore, when binning is in use, the AOIWidth value will always indicate the number of data
pixels that each row of the image data contains and not the number of pixels read off the sensor. The AOILeft and
AOITop coordinates are specified in units of sensor pixels.

Figure 4: Configuring an AOI and presentation of Super-Pixels

AOIWidth = 4

AOIHeight = 3

AOIBinning = 2x2

Super Pixel

Sensor Pixel

AOILeft = 4

AOITop = 2

Page 56

 V2.6 June 2016 andor.com

SDK 3

Support for AOI Control

Some older versions of the Neo camera do not support full control over the AOI. In this case the FullAOIControl
feature will return false.

If the FullAOIControl feature is not implemented or returns false for your camera then there are restrictions on the
configurations of AOI’s that can be used. The available AOI’s are listed in the table below.

Width Height Top Left(12bit)* Left(16bit)** X Centre
(12 bit)

X Centre
(16bit)

2592 2160 1 1 1 1297 1297

2544 2160 1 17 25 1289 1297

2064 2048 57 257 265 1289 1297

1776 1760 201 401 409 1289 1297

1920 1080 537 337 337 1297 1297

1392 1040 561 593 601 1289 1297

528 512 825 1025 1033 1289 1297

240 256 953 1169 1177 1289 1297

144 128 1017 1217 1225 1289 1297

2592 304 929 1 1 1297 1297

*12bit refers to mono12packed pixel encoding.
**16bit refers to mono12 or mono16 pixel encoding.

4.7 PIXELENCODING AND PREAMPGAINCONTROL

When changing PreAmpGainControl, the PixelEncoding feature will automatically adjust to a default setting for that
PreAmpGainControl. For example, if the PreAmpGainControl feature is changed from ‘12-bit (low noise)’ to ‘16-bit (low
noise & high well capacity)’ then the PixelEncoding feature will switch automatically to Mono16. This will only occur if
the PixelEncoding is currently set to Mono12 or Mono12Packed. Similarly, PixelEncoding will switch automatically to
either Mono12 or Mono12Packed when the PreAmpGainControl feature is changed from ‘16-bit (low noise & high well
capacity)’ to ‘12-bit (low noise)’. When PixelEncoding is set to Mono32, it does not change when PreAmpGainControl
is changed.

Page 57

 V2.6 June 2016 andor.com

SDK 3

4.8 SENSOR COOLING

It is important to cool the temperature of the sCMOS sensor to reduce the amount of noise in the images captured,
see example below of the same image at different sensor temperatures. Sensor cooling can be set with the Boolean
feature SensorCooling. The sensor temperature can then be set with the Enumerated feature, TemperatureControl
and read using the Float feature SensorTemperature. To check the status of the cooling mechanism, read the
TemperatureStatus feature. The possible status options are:

 Cooler Off Cooling has been disabled.

 Stabilised Temperature has stabilised at Target Temperature.

 Cooling Temperature is approaching Target Temperature.

 Drift Temperature has drifted outside Target Range having stabilised.

 Not Stabilised Temperature is within Target Range but has not yet stabilised.

 Fault Temperature has been outside Target Range for a long period of time.

Figure 5: The effect of sensor cooling on noise: sCMOS sensor at +5°C and -40°C cooling.

double temperature = 0;

AT_SetBool(Hndl, L"SensorCooling", AT_TRUE);

AT_GetFloat(Hndl, L"SensorTemperature", &temperature);

cout << "Temperature: " << temperature << endl;

int temperatureCount = 0;

AT_GetEnumCount(Hndl, L"TemperatureControl", &temperatureCount);

AT_SetEnumIndex(Hndl, L"TemperatureControl", temperatureCount-1);

int temperatureStatusIndex = 0;

wchar_t* temperatureStatus[256];

AT_GetEnumIndex(Hndl, L"TemperatureStatus", &temperatureStatusIndex);

AT_GetEnumStringByIndex(Hndl, L"TemperatureStatus", temperatureStatusIndex,

temperatureStatus, 256);

while(wcscmp(L"Stabilised",temperatureStatus) != 0) {

 sleep(1);

 AT_GetEnumIndex(Hndl, L"TemperatureStatus", &temperatureStatusIndex);

 AT_GetEnumStringByIndex(Hndl, L"TemperatureStatus", temperatureStatusIndex,

temperatureStatus, 256);

 wcout << L"Temperature Status: " << temperatureStatus << endl;

}

cout << "Temperature Stabilised" << endl;

Page 58

 V2.6 June 2016 andor.com

SDK 3

4.9 COMPARISON OF SDK2 AND SDK3

Action SDK2 SDK3

Setting Exposure Time SetExposureTime(0.1);
AT_SetFloat(Hndl,

L“ExposureTime”, 0.1);

Using External Trigger SetTriggerMode(1);
AT_SetEnumString(Hndl,

L“TriggerMode”, L“External”);

Starting an Acquisition StartAcquisition();
AT_Command(Hndl,

L“AcquisitionStart”);

Determining if Pre Amp

Gain is supported

AndorCapabilities AndorCaps;

GetCapabilties(&AndorCaps);

if (AndorCaps.ulSetFunctions &

AC_SETFUNCTION_PREAMPGAIN)

 Implemented = 1;

else

 Implemented = 0;

AT_IsImplemented(Hndl,

L“PreAmpGain”, &Implemented);

Getting Current

Exposure Time

GetAcquisitionTimings(&Exposure,

&AccCycleTime, &KinCycleTime);

AT_GetFloat(Hndl, L“ExposureTime”,

&Exposure);

Setting Frame Rate

(5fps)

SetKineticCycleTime(0.2);

AT_SetFloat(Hndl, L“FrameRate”,

5.0);

Getting the Serial

Number

GetCameraSerialNumber(&Serial);

AT_GetString(Hndl,

L“SerialNumber”, Serial);

Getting Current Trigger

Mode
-- Not supported --

AT_GetEnumIndex(Hndl,

L“TriggerMode”, Mode);

AOI Setup
SetImage(1, 1, 256, 384,

512,768);

AT_SetInt(Hndl, L“AOIHBin”,

1);

AT_SetInt(Hndl, L“AOIWidth”,

128);

AT_SetInt(Hndl, L“AOILeft”,

256);

AT_SetInt(Hndl, L“AOIVBin”,

1);

AT_SetInt(Hndl, L“AOIHeight”,

256);

AT_SetInt(Hndl, L“AOITop”,

512);

Opening Second device

GetCameraHandle(1, &SecondHandle)

SetCurrentCamera(SecondHandle);

AT_Open(1, &SecondHandle);

Getting Limits
GetMinimumNumberInSeries(&Min)
-- Not supported --

AT_GetIntMin(Hndl,

L“FrameCount”, &Min);

AT_GetIntMax(Hndl,

L“FrameCount”, &Max);

Page 59

 V2.6 June 2016 andor.com

SDK 3

SECTION 5 FUNCTION REFERENCE

5.1 FUNCTION LISTING

This section provides a description of various reference functions available in SDK3.

5.1.1 AT_OPEN

int AT_Open(int DeviceIndex, AT_H* Handle)

Description
This function is used to open up a handle to a particular camera. The DeviceIndex parameter indicates the index of the
camera that you wish to open and the handle to the camera is returned in the Handle parameter. This Handle
parameter must be passed as the first parameter to all other functions to access the features or to acquire data from
the camera.

5.1.2 AT_CLOSE

int AT_Close(AT_H Handle)

Description
This function is used to close a previously opened handle to a camera. The Handle parameter is the handle that was
returned from the AT_Open function. The function should be called when you no longer wish to access the camera
from your application usually at shutdown.

5.1.3 AT_ISIMPLEMENTED

int AT_IsImplemented(AT_H Hndl, AT_WC* Feature, AT_BOOL* Implemented)

Description
This function can be used to determine whether the camera has implemented the feature specified by the Feature
parameter. On return the Implemented parameter will contain the value AT_FALSE or AT_TRUE. In the case that the
feature is implemented the value of Implemented will be AT_TRUE, otherwise it will be AT_FALSE.

5.1.4 AT_ISREADONLY

int AT_IsReadOnly(AT_H Hndl, AT_WC* Feature, AT_BOOL* ReadOnly)

Description
This function can be used to determine whether the feature specified by the Feature parameter can be modified. On
return the ReadOnly parameter will contain the value AT_FALSE or AT_TRUE. In the case that the feature can be
modified the value of ReadOnly will be AT_TRUE, otherwise it will be AT_FALSE.

Page 60

 V2.6 June 2016 andor.com

SDK 3

5.1.5 AT_ISWRITABLE

int AT_IsWritable(AT_H Hndl, AT_WC* Feature, AT_BOOL* Writable)

Description
This function can be used to determine whether the feature specified by the Feature parameter can currently be
modified. On return the Writable parameter will contain the value AT_FALSE or AT_TRUE. In the case that the feature
is currently writable the value of Writable will be AT_TRUE, otherwise it will be AT_FALSE. This function differs from
the AT_IsReadOnly function in that a feature that is not writable may only be temporarily unavailable for modification
because of the values of other features, whereas a feature that is read only is permanently un-modifiable.

5.1.6 AT_ISREADABLE

int AT_IsReadable(AT_H Hndl, AT_WC* Feature, AT_BOOL* Readable)

Description
This function can be used to determine whether the feature specified by the Feature parameter can currently be read.
On return the Readable parameter will contain the value AT_FALSE or AT_TRUE. In the case that the feature is
currently readable the value of Readable will be AT_TRUE, otherwise it will be AT_FALSE. A feature may become
unavailable for reading based on the value of other features.

5.1.7 AT_REGISTERFEATURECALLBACK

int AT_RegisterFeatureCallback(AT_H Hndl, AT_WC* Feature,

 FeatureCallback EvCallback, void* Context)

Description
To retrieve a notification each time the value or other properties of a feature changes you can use this function to
register a callback function. The Feature that you wish to receive notifications for is passed into the function along with
the function that you wish to get called. The fourth parameter is a caller defined parameter that can be used to provide
contextual information when the callback is called. The callback function should have the signature shown below.

int AT_EXP_CONV MyFunction(AT_H Hndl, AT_WC* Feature, void* Context)

When called, the Feature that caused the callback is returned which allows you to use a single callback function to
handle multiple features. The context parameter is the same as that used when registering the callback and is sent
unmodified. As soon as this callback is registered a single callback will be made immediately to allow the callback
handling code to perform any Initialisation code to set up monitoring of the feature.

5.1.8 AT_UNREGISTERFEATURECALLBACK

int AT_UnregisterFeatureCallback(AT_H Hndl, AT_WC* Feature,

 FeatureCallback EvCallback, void* Context)

Description
This function is used to un-register a callback function previously registered using AT_RegisterFeatureCallback. The
same parameters that were passed to the register function should be passed to this unregister function. Once this
function is called, no more callbacks will be sent to this callback function for the specified Feature.

5.1.9 AT_INITIALISELIBRARY

Page 61

 V2.6 June 2016 andor.com

SDK 3

int AT_InitialiseLibrary()

Description
This function is used to prepare the SDK internal structures for use and must be called before any other SDK functions
have been called.

5.1.10 AT_FINALISELIBRARY

int AT_FinaliseLibrary()

Description
This function will free up any resources used by the SDK and should be called whenever the program no longer needs
to use any SDK functions. AT_InitialiseLibrary may be called again later by the same process if camera control is
again required.

5.1.11 AT_SETINT

int AT_SetInt(AT_H Hndl, AT_WC* Feature, AT_64 Value)

Description
This function will modify the value of the specified feature, if the feature is of integer type. The function will return an
error if the feature is read only or currently not writable or if the feature is either not an integer feature or is not
implemented by the camera.

5.1.12 – AT_GETINT

int AT_GetInt(AT_H Hndl, AT_WC* Feature, AT_64 * Value)

Description
This function will return the current value for the specified feature. The function will return an error if the feature is
currently not readable or if the specified feature is either not an integer feature or is not implemented by the camera.

5.1.13 – AT_GETINTMAX

int AT_GetIntMax(AT_H Hndl, AT_WC* Feature, AT_64 * MaxValue)

Description
This function will return the maximum allowable value for the specified integer type feature.

5.1.14 – AT_GETINTMIN

int AT_GetIntMin(AT_H Hndl, AT_WC* Feature, AT_64 * MinValue)

Description
This function will return the minimum allowable value for the specified integer type feature.

5.1.15 – AT_SETFLOAT

int AT_SetFloat(AT_H Hndl, AT_WC* Feature, double Value)

Page 62

 V2.6 June 2016 andor.com

SDK 3

Description
This function will modify the value of the specified feature, if the feature is of float type. The function will return an error
if the feature is read only or currently not writable or if the feature is either not a float type feature or is not
implemented by the camera.

5.1.16 – AT_GETFLOAT

int AT_GetFloat(AT_H Hndl, AT_WC* Feature, double * Value)

Description
This function will return the current value for the specified feature. The function will return an error if the feature is
currently not readable or if the specified feature is either not a float type feature or is not implemented by the camera.

5.1.17 – AT_GETFLOATMAX

int AT_GetFloatMax(AT_H Hndl, AT_WC* Feature, double * MaxValue)

Description
This function will return the maximum allowable value for the specified float type feature.

5.1.18 – AT_GETFLOATMIN

int AT_GetIntMin(AT_H Hndl, AT_WC* Feature, double * MinValue)

Description
This function will return the minimum allowable value for the specified float type feature.

5.1.19 – AT_SETBOOL

int AT_SetBool(AT_H Hndl, AT_WC* Feature, AT_BOOL Value)

Description
This function will set the value of the specified boolean feature. A value of AT_FALSE indicates false and a value of
AT_TRUE indicates true. An error will be returned if the feature is read only, currently not writable, not a boolean
feature or is not implemented by the camera.

Page 63

 V2.6 June 2016 andor.com

SDK 3

5.1.20 – AT_GETBOOL

int AT_GetBool(AT_H Hndl, AT_WC* Feature, AT_BOOL * Value)

Description
This function will return the current value of the specified boolean feature. If a value of AT_FALSE is returned then the
feature is currently set to false. If a value of AT_TRUE is returned then the feature is currently set to true. An error will
be returned if the feature is currently not readable, not a boolean feature or is not implemented by the camera.

5.1.21 – AT_COMMAND

int AT_Command(AT_H Hndl, AT_WC* Feature)

Description
This function will trigger the specified command feature to execute. An error will be returned if the feature is currently
not writable, not a command feature or is not implemented by the camera.

5.1.22 – AT_SETSTRING

int AT_SetString(AT_H Hndl, AT_WC* Feature, AT_WC* Value)

Description
This function will set the value of the specified string feature. The string should be null terminated. An error will be
returned if the feature is read only, currently not writable, not a string feature or is not implemented by the camera.

5.1.23 – AT_GETSTRING

int AT_GetString(AT_H Hndl, AT_WC* Feature, AT_WC* Value, int StringLength)

Description
This function will return the current value of the specified string feature. The length of the string in which you want the
value returned must be provided in the fourth parameter and the string should include enough space for the null
terminator. An error will be returned if the feature is currently not readable, not a string feature or is not implemented
by the camera.

5.1.24 – AT_GETSTRINGMAXLENGTH

int AT_GetStringMaxLength(AT_H Hndl, AT_WC* Feature, int* MaxStringLength)

Description
This function will return the maximum length of the specified string feature. This value can be used to determine what
size of string to allocate when retrieving the value of the feature using the AT_GetString function.

Page 64

 V2.6 June 2016 andor.com

SDK 3

5.1.25 – AT_SETENUMINDEX

int AT_SetEnumIndex(AT_H Hndl, AT_WC* Feature, int Value)

Description
This function sets the currently selected index of the specified enumerated feature. The index is zero based and
should be in the range 0 to Count-1, where Count has been retrieved using the AT_GetEnumCount function. An error
will be returned if the feature is read only, currently not writable, the index is outside the allowed range, not an
enumerated feature, or the feature is not implemented by the camera. In some cases an index within the range may
not be allowed if its availability depends on other features values, in this case an error will be returned if this index is
applied.

5.1.26 – AT_SETENUMSTRING

int AT_SetEnumString(AT_H Hndl, AT_WC* Feature, AT_WC* String)

Description
This function directly sets the current value of the specified enumerated feature. The String parameter must be one of
the allowed values for the feature and must be currently available.

5.1.27 – AT_GETENUMINDEX

int AT_GetEnumIndex(AT_H Hndl, AT_WC* Feature, int* Value)

Description
This function retrieves the currently selected index of the specified enumerated feature. The function will return an
error if the feature is currently not readable or if the specified feature is either not an enumerated type feature or is not
implemented by the camera.

5.1.28 – AT_GETENUMCOUNT

int AT_GetEnumCount(AT_H Hndl, AT_WC* Feature, int* Count)

Description
This function returns the number of indexes that the specified enumerated feature can be set to.

5.1.29 – AT_GETENUMSTRINGBYINDEX

int AT_GetEnumStringByIndex(AT_H Hndl, AT_WC* Feature, int Index, AT_WC* String,

int StringLength)

Description
This function returns the text representation of the specified enumerated feature index. The index should be in the
range 0... Count-1, where Count has been retrieved using the AT_GetEnumCount function. The length of the String
parameter should be passed in to the fifth parameter.

Page 65

 V2.6 June 2016 andor.com

SDK 3

5.1.30 – AT_ISENUMINDEXAVAILABLE

int AT_IsEnumIndexAvailable(AT_H Hndl, AT_WC* Feature, int Index,

 AT_BOOL* Available)

Description
This function indicates whether the specified enumerated feature index can currently be selected. The availability of
enumerated options may depend on the value of other features.

5.1.31 – AT_ISENUMINDEXIMPLEMENTED

int AT_IsEnumIndexImplemented(AT_H Hndl, AT_WC* Feature, int Index,

 AT_BOOL* Implemented)

Description
This function indicates whether the camera supports the specified enumerated feature index. For consistency across
the camera range, some enumerated features options may appear in the list even when they are not supported, this
function will let you filter out these options.

5.1.32 – AT_QUEUEBUFFER

int AT_QueueBuffer(AT_H Hndl, AT_U8* Ptr, int PtrSize)

Description
This function configures the area of memory into which acquired images will be stored. You can call this function
multiple times to set up storage for consecutive images in a series. The order in which buffers are queued is the order
in which they will be used on a first in, first out (FIFO) basis. The PtrSize parameter should be equal to the size of an
individual image in number of bytes. This function may be called before the acquisition starts, after the acquisition
starts or a combination of the two. Any buffers queued using this function should not be modified or deallocated by the
calling application until they are either returned from the AT_WaitBuffer function, or the AT_Flush function is called.

5.1.33 – AT_WAITBUFFER

int AT_WaitBuffer(AT_H Hndl, AT_U8** Ptr, int* PtrSize, unsigned int Timeout)

Description
This function is used to receive notification whenever a previously queued image buffer contains data. The address of
the buffer that is now available is returned in the Ptr parameter. The PtrSize parameter will return with the size of the
returned image buffer. The Timeout parameter can be specified to indicate how long in milliseconds you wish to wait
for the next available image. The function will put the calling thread to sleep until either an image becomes available or
the Timeout elapses.

5.1.34 – AT_FLUSH

int AT_Flush(AT_H Hndl)

Description
This function is used to flush out any remaining buffers that have been queued using the AT_QueueBuffer function. It
should always be called after the AT_Command(L”AcquisitionStop”) function has been called. If this function is not
called after an acquisition is complete, then the remaining buffers will be used the next time an acquisition is started,
and may lead to undefined behaviour.

Page 66

 V2.6 June 2016 andor.com

SDK 3

SECTION 6 ADDITIONAL LIBRARIES
This section describes the additional libraries that are provided as part of the SDK3 installation. These additional
libraries are not required to use the SDK; they provide additional ease of use functionality.

6.1 ATUTILITY

This library provides additional general utility functions and can be used with an Embarcadero or Microsoft compatible
compiler. To use this library perform the following steps (assumes you have already setup your project as described in
Section 1.6 Getting Started.

1. Add "atutility.h" to the list of header files included in your application source file.
2. Add the appropriate library from the SDK3 installation directory to your project.

 atutility.lib for the Embarcadero compiler

 atutilitym.lib for the Microsoft compiler
3. Copy the “atutility.dll” from the SDK3 installation directory to the directory that the executable is going to run

from.

6.1.1 – AT_INITIALISEUTILITYLIBRARY
int AT_InitialiseUtilityLibrary ()

This function is used to initialize the utility library. It must be called before any utility functions can be called. There are
no parameters expected.

The following is a brief explanation of the error codes that can be returned by the function:

Error Code Description
AT_SUCCESS (0) The library has been initialised successfully.

6.1.2 – AT_FINALISEUTILITYLIBRARY

int AT_FinaliseUtilityLibrary ()

This function is used to close the utility library. It must be called before the user application completes to clean up
internal resources. There are no parameters expected.

The following is a brief explanation of the error codes that can be returned by the function:

Error Code Description
AT_SUCCESS (0) The library has been closed successfully.

6.1.3 – AT_CONVERTBUFFER

int AT_ConvertBuffer(AT_U8* inputBuffer, AT_U8* outputBuffer, AT_64 width, AT_64

height, AT_64 stride, const AT_WC* inputPixelEncoding, const AT_WC*

outputPixelEncoding)

This function is used to convert a buffer from one pixel encoding to another pixel encoding. For an explanation of the
different encoding types see the pixel encoding feature description in the Feature Reference Section 4.2 Feature
Reference. The converted image data will not contain any metadata therefore, if you require access to the metadata
you will have to extract this from the input buffer as described in the Metadata Section 4.5 Metadata. The following
table provides a brief description of the parameters.

Parameter Description

inputBuffer This is a pointer to the input buffer that you want to convert.

Page 67

 V2.6 June 2016 andor.com

SDK 3

outputBuffer This is a pointer to the buffer that you want the converted data to be stored in. This
should be large enough to hold the converted image i.e. width x height x bytes/pixel
for the output pixel encoding (Mono16 = 2, Mono32 = 4).

width This is the width of the image stored in the input buffer in pixels. Can be determined
by using the SDK3 integer feature "AOI Width".

height This is the height of the image stored in the input buffer in pixels. Can be
determined by using the SDK3 integer feature "AOI Height".

stride This is the number of bytes/line for the image stored in the input buffer. Can be
determined by using the SDK3 integer feature "AOI Stride".

inputPixelEncoding This is the pixel encoding that was used to create the image stored in the input
buffer. The valid values that can be used are:

 Mono12

 Mono12Packed

 Mono16

 Mono32

outputPixelEncoding This is the pixel encoding that will be used to store the image in the output buffer.
The valid values that can be used are:

 Mono16

 Mono32

The following table provides a brief description of the error codes that can be returned by the function:

Error Code Description
AT_SUCCESS (0) The function call has been successful.
AT_ERR_NOTINITIALISED (1) The library has not been initialised.
AT_ERR_INVALIDINPUTPIXELENCODING

(1003)

The input pixel encoding is not valid.

AT_ERR_INVALIDOUTPUTPIXELENCODING

(1002)

The output pixel encoding is not valid.

6.1.3.1 CONVERT BUFFER EXAMPLE

The following simple console application shows how to use the AT_ConvertBuffer function to convert from
“Mono12Packed” image data to “Mono16” image data:

#include "atcore.h"

#include "atutility.h"

int main(int argc, char* argv[])

{

 int i_retCode;

 i_retCode = AT_InitialiseLibrary();

 if (i_retCode == AT_SUCCESS) {

 i_retCode = AT_InitialiseUtilityLibrary ();

 if (i_retCode == AT_SUCCESS) {

 AT_64 iNumberDevices = 0;

 AT_GetInt(AT_HANDLE_SYSTEM, L"Device Count", &iNumberDevices);

 if (iNumberDevices > 0) {

 AT_H Hndl;

 i_retCode = AT_Open(0, &Hndl);

Page 68

 V2.6 June 2016 andor.com

SDK 3

 if (i_retCode == AT_SUCCESS) {

 AT_SetEnumeratedString(Hndl, L"Pixel Encoding", L"Mono12Packed");

 AT_SetFloat(Hndl, L"Exposure Time", 0.01);

 double temperature = 0;

 AT_SetBool(Hndl, L"SensorCooling", AT_TRUE);

 int temperatureCount = 0;

 AT_GetEnumCount(Hndl, L"TemperatureControl", &temperatureCount);

 AT_SetEnumIndex(Hndl, L"TemperatureControl", temperatureCount-1);

 int temperatureStatusIndex = 0;

 wchar_t temperatureStatus[256];

 AT_GetEnumIndex(Hndl, L"TemperatureStatus", &temperatureStatusIndex);

 AT_GetEnumStringByIndex(Hndl, L"TemperatureStatus", temperatureStatusIndex,

temperatureStatus, 256);

 while(wcscmp(L"Stabilised",temperatureStatus) != 0) {

 AT_GetEnumIndex(Hndl, L"TemperatureStatus", &temperatureStatusIndex);

 AT_GetEnumStringByIndex(Hndl, L"TemperatureStatus", temperatureStatusIndex,

temperatureStatus, 256);

 }

 //Get the number of bytes required to store one frame

 AT_64 iImageSizeBytes;

 AT_GetInt(Hndl, L"Image Size Bytes", &iImageSizeBytes);

 int iBufferSize = static_cast<int>(iImageSizeBytes);

 //Allocate a memory buffer to store one frame

 unsigned char* UserBuffer = new unsigned char[iBufferSize];

 AT_QueueBuffer(Hndl, UserBuffer, iBufferSize);

 AT_Command(Hndl, L"Acquisition Start");

 unsigned char* Buffer;

 if (AT_WaitBuffer(Hndl, &Buffer, &iBufferSize, 10000) == AT_SUCCESS){

 //Unpack the 12 bit packed data

 AT_64 ImageHeight;

 AT_GetInt(Hndl, L"AOI Height", &ImageHeight);

 AT_64 ImageWidth;

 AT_GetInt(Hndl, L"AOI Width", &ImageWidth);

 AT_64 ImageStride;

 AT_GetInt(Hndl, L"AOI Stride", &ImageStride);

 unsigned short* unpackedBuffer =

 new unsigned short[ImageHeight*ImageWidth];

 AT_ConvertBuffer(Buffer,

 reinterpret_cast<unsigned char*>(unpackedBuffer),

 ImageWidth, ImageHeight,

 ImageStride, L"Mono12Packed", L"Mono16");

 // process unpacked image data

 delete[] unpackedBuffer;

 }

 AT_Command(Hndl, L"Acquisition Stop");

 AT_Flush(Hndl);

 delete[] UserBuffer;

 }

 AT_Close(Hndl);

 }

Page 69

 V2.6 June 2016 andor.com

SDK 3

 }

 }

 AT_FinaliseLibrary();

 AT_FinaliseUtilityLibrary();

 return 0;

}

6.1.4 – AT_CONVERTBUFFERUSINGMETADATA

int AT_ConvertBufferUsingMetaData(AT_U8* inputBuffer, AT_U8* outputBuffer, AT_64

imagesizebytes, const AT_WC* outputPixelEncoding)

This function is used to convert a buffer from the input pixel encoding to another pixel encoding. For an explanation of
the different encoding types see the pixel encoding feature description in the Feature Reference Section 4.2 Feature
Reference. The converted image data will not contain any metadata therefore, if you require access to the metadata
you will have to extract this from the input buffer as described in the Metadata Section 4.5 Metadata. The following
table provides a brief description of the parameters.

Parameter Description

inputBuffer This is a pointer to the input buffer that you want to convert.

outputBuffer This is a pointer to the buffer that you want the converted data to be stored in. This
should be large enough to hold the converted image i.e. width x height x bytes/pixel
for the output pixel encoding (Mono16 = 2, Mono32 = 4).

imagesizebytes This is the size of the image stored in the input buffer in bytes. Can be determined
by using the SDK3 integer feature "ImageSizeBytes".

outputPixelEncoding This is the pixel encoding that will be used to store the image in the output buffer.
The valid values that can be used are:

 Mono16

 Mono32

The following table provides a brief description of the error codes that can be returned by the function:

Error Code Description
AT_SUCCESS (0) The function call has been successful.
AT_ERR_NOTINITIALISED (1) The library has not been initialised.
AT_ERR_INVALIDOUTPUTPIXELENCODING

(1002)

The output pixel encoding is not valid.

AT_ERR_INVALIDMETADATAINFO (1004) The input buffer does not include metadata. This may be due to
the system not supporting this option or it not being activated.

Page 70

 V2.6 June 2016 andor.com

SDK 3

APPENDIX A sCMOS Feature Quick Reference

Feature Type Available Options
AccumulateCount Integer Na

AcquisitionStart Command Na

AcquisitionStop Command Na

AlternatingReadoutDirection Boolean Na

AOIBinning Enumerated 1x1, 2x2, 3x3, 4x4, 8x8

AOIHBin Integer Na

AOIHeight Integer Na

AOILayout Enumerated Image, Multitrack

AOILeft Integer Na

AOIStride Integer Na

AOITop Integer Na

AOIVBin Integer Na

AOIWidth Integer Na

AuxiliaryOutSource Enumerated FireRow1, FireRowN, FireAll, FireAny

AuxOutSourceTwo Enumerated ExternalShutterControl, FrameClock, RowClock,
ExposedRowClock

Baseline Integer Na

BitDepth Enumerated 11 Bit or 12Bit,
16 Bit

BufferOverflowEvent Integer Na

BytesPerPixel Floating Point Na

CameraAcquiring Boolean Na

CameraDump Command Na

CameraModel String Na

CameraName String Na

CameraPresent Boolean Na

ControllerID String Na

FrameCount Integer Na

CycleMode Enumerated Fixed, Continuous

DeviceCount Integer Na

ElectronicShutteringMode Enumerated Rolling, Global

EventEnable Boolean Na

EventsMissedEvent Integer Na

EventSelector Enumerated ExposureEndEvent, ExposureStartEvent,
RowNExposureEndEvent, RowNExposureStartEvent,
EventsMissedEvent, BufferOverflowEvent

ExposedPixelHeight Integer Na

ExposureTime Floating Point Na

ExposureEndEvent Integer Na

ExposureStartEvent Integer Na

External Trigger Delay Floating Point Na

FanSpeed Enumerated Off, Low, On

FastAOIFrameRateEnable Boolean Na

FirmwareVersion String Na

FrameRate Floating Point Na

FullAOIControl Boolean Na

ImageSizeBytes Integer Na

InterfaceType String Na

IOInvert Boolean Na

IOSelector Enumerated Fire 1, Fire N, Aux Out 1, Arm, External Trigger

LineScanSpeed Floating Point Na

LUTIndex Integer Na

LUTValue Integer Na

MaxInterfaceTransferRate Floating Point Na

MetadataEnable Boolean Na

MetadataTimestamp Boolean Na

MetadataFrame Boolean Na

MultitrackBinned Boolean Na

MultitrackCount Integer Na

Page 71

 V2.6 June 2016 andor.com

SDK 3

Feature Type Available Options
MultitrackEnd Integer Na

MultitrackSelector Integer Na

MultitrackStart Integer Na

Overlap Boolean Na

PixelEncoding Enumerated Mono12, Mono12Packed, Mono16, Mono32

PixelHeight Floating Point Na

PixelReadoutRate Enumerated 280 MHz, 200 MHz, 100 MHz

PixelWidth Floating Point Na

PreAmpGainControl Enumerated Gain 1 (11 bit), Gain 2 (11 bit), Gain 3 (11 bit), Gain 4 (11
bit),
Gain 1 Gain 3 (16 bit), Gain 1 Gain 4 (16 bit), Gain 2 Gain 3
(16 bit), Gain 2 Gain 4 (16 bit)

ReadoutTime Floating Point Na

RollingShutterGlobalClear Boolean Na

RowNExposureEndEvent Integer Na

RowNExposureStartEvent Integer Na

RowReadTime Floating Point Na

ScanSpeedControlEnable Boolean Na

SensorCooling Boolean Na

SensorHeight Integer Na

SensorReadoutMode Enumerated Bottom Up Sequential, Bottom Up Simultaneous, Centre Out
Simultaneous, Outside In Simultaneous, Top Down
Sequential, Top Down Simultaneous

SensorTemperature Floating Point Na

SensorWidth Integer Na

SerialNumber String Na

ShutterOutputMode Enumerated Open, Closed

SimplePreAmpGainControl Enumerated 11-bit (high well capacity) or 12-bit (high well capacity),
11-bit (low noise) or 12-bit (low noise),
16-bit (low noise & high well capacity)

Shutter Transfer Time Floating Point Na

SoftwareTrigger Command Na

StaticBlemishCorrection Boolean Na

SpuriousNoiseFilter Boolean Na

TargetSensorTemperature Floating Point Na

TemperatureControl Enumerated Na

TemperatureStatus Enumerated Cooler Off, Stabilised, Cooling, Drift, Not Stabilised, Fault

TimestampClock Integer Na

TimestampClockFrequency Integer Na

TimestampClockReset Command Na

TriggerMode Enumerated Internal, Software, External, External Start,
External Exposure

VerticallyCentreAOI Boolean Na

Page 72

 V2.6 June 2016 andor.com

SDK 3

APPENDIX B Apogee Feature Quick Reference

Feature Type Available Options
AcquiredCount Integer Na

AOIHBin Integer Na

AOIHeight Integer Na

AOILayout Enumerated Image, Kinetics, TDI

AOILeft Integer Na

AOITop Integer Na

AOIVBin Integer Na

AOIWidth Integer Na

BackoffTemperatureOffset Floating Point Na

BitDepth Enumerated 12 Bit(Not AltaF/Aspen/Ascent), 16 Bit
For AltaU/E use PixelReadoutRate
“Normal” - > “16 bit”,
“Fast” -> “12-bit”

CameraName String Na

CameraFamily String Na

CameraMemory Integer Na

ColourFilter Enumerated None, Blue, TrueSense

CoolerPower Double Na

DDR2Type String Na

DisableShutter Boolean Na

DriverVersion String Na

ExternalIOReadout Boolean Na

FanSpeed Enumerated Off, Low, Medium, High

FirmwareVersion String Na

ForceShutterOpen String Na

FrameCount Integer Na

FrameRate Floating Point Na

FrameInterval Boolean Na

FrameIntervalTiming Boolean Na

HeatSinkTemperature Floating Point Na

InputVoltage Floating Point Na

InterfaceType String Na

IOControl Enumerated Default, User

IODirection Boolean/Enumerated Input/0, Output/1

IOState Boolean Na

IRPreFlashEnable Boolean Na

KeepCleanEnable Boolean Na

KeepCleanPostExposureEnable Boolean Na

MicrocodeVersion String Na

Overlap Boolean Na

PixelHeight Floating Point Na

PixelReadoutRate Enumerated Normal, Fast (Not Available AltaE)

PortSelector Integer Na

PreAmpGainValue Integer Na

PreAmpOffsetValue Integer Na

SensorCooling Boolean Na

SensorHeight Integer Na

SensorModel String Na

SensorTemperature Floating Point Na

SensorType Enumerated CCD, CMOS

SensorWidth Integer Na

ShutterMode Enumerated Open, Closed, Auto

ShutterStrobePeriod Double Na

ShutterStrobePosition Double Na

ShutterAmpControl Boolean Na

ShutterState Boolean Na

TemperatureStatus Enumerated Backoff

TransmitFrames Boolean Na

TriggerMode Enumerated Internal, External, External Start, External Exposure

Page 73

 V2.6 June 2016 andor.com

SDK 3

Feature Type Available Options
UsbProductId Integer Na

UsbDeviceId Integer Na

Page 74

 V2.6 June 2016 andor.com

SDK 3

APPENDIX C Function Quick Reference

int AT_InitialiseLibrary();

int AT_FinaliseLibrary();

int AT_Open(int DeviceIndex, AT_H* Handle);

int AT_Close(AT_H Hndl);

typedef int (*FeatureCallback)(AT_H Hndl, AT_WC* Feature, void* Context);

int AT_RegisterFeatureCallback(AT_H Hndl, AT_WC* Feature, FeatureCallback EvCallback,

void* Context);

int AT_UnregisterFeatureCallback(AT_H Hndl, AT_WC* Feature, FeatureCallback EvCallback,

void* Context);

int AT_IsImplemented(AT_H Hndl, AT_WC* Feature, AT_BOOL* Implemented);

int AT_IsReadOnly(AT_H Hndl, AT_WC* Feature, AT_BOOL* ReadOnly);

int AT_IsReadable(AT_H Hndl, AT_WC* Feature, AT_BOOL* Readable);

int AT_IsWritable(AT_H Hndl, AT_WC* Feature, AT_BOOL* Writable);

int AT_SetInt(AT_H Hndl, AT_WC* Feature, AT_64 Value);

int AT_GetInt(AT_H Hndl, AT_WC* Feature, AT_64 * Value);

int AT_GetIntMax(AT_H Hndl, AT_WC* Feature, AT_64 * MaxValue);

int AT_GetIntMin(AT_H Hndl, AT_WC* Feature, AT_64 * MinValue);

int AT_SetFloat(AT_H Hndl, AT_WC* Feature, double Value);

int AT_GetFloat(AT_H Hndl, AT_WC* Feature, double * Value);

int AT_GetFloatMax(AT_H Hndl, AT_WC* Feature, double * MaxValue);

int AT_GetFloatMin(AT_H Hndl, AT_WC* Feature, double * MinValue);

int AT_SetBool(AT_H Hndl, AT_WC* Feature, AT_BOOL Value);

int AT_GetBool(AT_H Hndl, AT_WC* Feature, AT_BOOL* Value);

int AT_SetEnumIndex(AT_H Hndl, AT_WC* Feature, int Value);

int AT_SetEnumString(AT_H Hndl, AT_WC* Feature, AT_WC* String);

int AT_GetEnumIndex(AT_H Hndl, AT_WC* Feature, int* Value);

int AT_GetEnumCount(AT_H Hndl, AT_WC* Feature, int* Count);

int AT_IsEnumIndexAvailable(AT_H Hndl, AT_WC* Feature, int Index, AT_BOOL* Available);

int AT_IsEnumIndexImplemented(AT_H Hndl, AT_WC* Feature, int Index, AT_BOOL*

Implemented);

int AT_GetEnumStringByIndex(AT_H Hndl, AT_WC* Feature, int Index, AT_WC* String, int

StringLength);

int AT_Command(AT_H Hndl, AT_WC* Feature);

int AT_SetString(AT_H Hndl, AT_WC* Feature, AT_WC* Value);

int AT_GetString(AT_H Hndl, AT_WC* Feature, AT_WC* Value, int StringLength);

int AT_GetStringMaxLength(AT_H Hndl, AT_WC* Feature, int* MaxStringLength);

int AT_QueueBuffer(AT_H Hndl, AT_U8 * Ptr, int PtrSize);

int AT_WaitBuffer(AT_H Hndl, AT_U8 ** Ptr, int* PtrSize, unsigned int Timeout);

int AT_Flush(AT_H Hndl);

Page 75

 V2.6 June 2016 andor.com

SDK 3

APPENDIX D Code Listing for Tutorial

#include "atcore.h"

int main(int argc, char* argv[])

{

 int i_returnCode;

 AT_H Hndl;

 int i_cameraIndex = 2;

 i_returnCode = AT_InitialiseLibrary();

 if (i_returnCode == AT_SUCCESS) {

 i_returnCode = AT_Open (i_cameraIndex, &Hndl);

 AT_WC ExpFeatureName[] = L"Exposure Time";

 double d_newExposure = 0.02;

 i_returnCode = AT_SetFloat (Hndl, ExpFeatureName, d_newExposure);

 if (i_returnCode == AT_SUCCESS) {

 //it has been set

 double d_actualExposure;

 i_returnCode = AT_GetFloat (Hndl, ExpFeatureName, &d_actualExposure);

 if (i_returnCode == AT_SUCCESS) {

 //the actual exposure being used is d_actualExposure

 AT_64 ImageSizeBytes;

 AT_GetInt(Hndl, L"Image Size Bytes", &ImageSizeBytes);

 //cast to prevent warnings

 int i_imageSize = static_cast<int>(ImageSizeBytes);

 unsigned char* uc_Buffer = NULL;

 unsigned char* gblp_Buffer = new unsigned char[i_imageSize+8];

 unsigned char* pucAlignedBuffer = reinterpret_cast<unsigned char*>(

(reinterpret_cast<unsigned long>(gblp_Buffer) + 7) & ~0x7);

 i_returnCode = AT_QueueBuffer(Hndl, pucAlignedBuffer, i_imageSize);

 if (i_returnCode == AT_SUCCESS) {

 i_returnCode = AT_Command(Hndl, L"Acquisition Start");

 if (i_returnCode == AT_SUCCESS) {

 unsigned char* pBuf;

 int BufSize;

 i_returnCode = AT_WaitBuffer(Hndl, &pBuf, &BufSize, 10000);

 if (i_returnCode == AT_SUCCESS) {

 //successfully got image

 if (pBuf == pucAlignedBuffer) {

 //check pixel encoding to confirm format of data stream and process

 }

 else {

 //Error buffer pointer incorrect from AT_WaitBuffer

 }

 }

 else {

 //error with AT_WaitBuffer, analyse i_returnCode

 }

 }

 AT_Command(Hndl, L"Acquisition Stop");

 AT_Flush(Hndl);

 }

Page 76

 V2.6 June 2016 andor.com

SDK 3

 }

 i_returnCode = AT_Close (Hndl);

 if (i_returnCode != AT_SUCCESS) {

 // error closing handle

 }

 }

 }

 i_returnCode = AT_FinaliseLibrary();

 if (i_returnCode != AT_SUCCESS) {

 //Error FinaliseLibrary

 }

 return 0;

}

Page 77

 V2.6 June 2016 andor.com

SDK 3

APPENDIX E Conversion between char* and AT_WC

The following code shows an example of how to convert a char* null terminated string to the equivalent wide character
string.

#include “stdlib.h”

char szStr[512];

AT_WC wcszStr[512];

mbstowcs(wcszStr, szStr, 512);

and from wide character string to char*

#include “stdlib.h”

char szStr[512];

AT_WC wcszStr[512];

wcstombs(szStr, wcszStr, 512);

	SECTION 1 INSTALLATION
	1.1 Technical Support
	1.2 Rationale
	1.3 Structure
	1.4 Key Features
	1.5 Installation
	1.5.1 Windows Installation
	1.5.2 Linux Installation
	1.6 Getting Started
	1.6.1 Windows Getting Started
	1.6.2 Linux Getting Started
	1.6.3 Microsoft Application Verifier

	SECTION 2 TUTORIAL
	2.1 Further Examples
	2.1.1 Initialize Library and Open Camera
	2.1.2 Simple Single Frame Acquisition
	2.1.3 Using a Feature
	2.1.4 Circular Buffer
	2.1.7 Pixel Encoding
	2.1.8 Call-Backs
	2.1.9 Metadata
	2.1.10 Binning
	2.1.11 Acquisition Events
	2.1.12 Fast Exposure Switching
	2.2 ESD Recovery

	SECTION 3 API (APPLICATION PROGRAM INTERFACE)
	3.1 Overview
	3.2 Function Listing
	3.3 API Description
	3.3.1 Library Initialization
	3.3.2 Opening a Camera Handle
	3.3.3 Integer Features
	3.3.4 Floating Point Features
	3.3.5 Boolean Features
	3.3.6 Enumerated Features
	3.3.7 Command Features
	3.3.8 String Features
	3.3.9 Buffer Management
	3.3.10 Feature Access Control
	3.3.11 Feature Notifications
	3.4 Error Codes

	SECTION 4 FEATURES
	4.1 Camera Support
	4.2 Feature Reference
	4.3 Image Format
	4.4 Pixel Encoding
	4.5 Metadata
	4.6 Area of Interest
	Figure 4: Configuring an AOI and presentation of Super-Pixels

	4.7 PixelEncoding and PreAmpGainControl
	4.8 Sensor Cooling
	4.9 Comparison of SDK2 and SDK3

	SECTION 5 FUNCTION REFERENCE
	5.1 Function Listing
	5.1.1 AT_Open
	5.1.2 AT_Close
	5.1.3 AT_IsImplemented
	5.1.4 AT_IsReadOnly
	5.1.5 AT_IsWritable
	5.1.6 AT_IsReadable
	5.1.7 AT_RegisterFeatureCallback
	5.1.8 AT_UnregisterFeatureCallback
	5.1.9 AT_InitialiseLibrary
	5.1.10 AT_FinaliseLibrary
	5.1.11 AT_SetInt
	5.1.12 – AT_GetInt
	5.1.13 – AT_GetIntMax
	5.1.14 – AT_GetIntMin
	5.1.15 – AT_SetFloat
	5.1.16 – AT_GetFloat
	5.1.17 – AT_GetFloatMax
	5.1.18 – AT_GetFloatMin
	5.1.19 – AT_SetBool
	5.1.20 – AT_GetBool
	5.1.21 – AT_Command
	5.1.22 – AT_SetString
	5.1.23 – AT_GetString
	5.1.24 – AT_GetStringMaxLength
	5.1.25 – AT_SetEnumIndex
	5.1.26 – AT_SetEnumString
	5.1.27 – AT_GetEnumIndex
	5.1.28 – AT_GetEnumCount
	5.1.29 – AT_GetEnumStringByIndex
	5.1.30 – AT_IsEnumIndexAvailable
	5.1.31 – AT_IsEnumIndexImplemented
	5.1.32 – AT_QueueBuffer
	5.1.33 – AT_WaitBuffer
	5.1.34 – AT_Flush

	SECTION 6 ADDITIONAL LIBRARIES
	6.1 ATUTILITY
	6.1.1 – AT_InitialiseUtilityLibrary
	6.1.2 – AT_FinaliseUtilityLibrary
	6.1.3 – AT_ConvertBuffer
	6.1.3.1 Convert Buffer Example
	6.1.4 – AT_ConvertBufferUsingMetadata
	APPENDIX A sCMOS Feature Quick Reference
	APPENDIX B Apogee Feature Quick Reference
	APPENDIX C Function Quick Reference
	APPENDIX D Code Listing for Tutorial
	APPENDIX E Conversion between char* and AT_WC

